Этапы истории развития эвм реферат

Санкт-Петербургский
государственный морской технический
университет

Кафедра
вычислительной техники и информационных
технологий

Реферат

По
дисциплине «Информатика»

Тема:
«Этапы развития

Электронно-вычислительных
машин»

Выполнил:
студент гр.813

Рябов.М.И.

Проверила:
Егорова А.Г.­

Санкт-Петербург

2012
год

Оглавление

Введение

1.
Поколения развития ЭВМ

1.1
Первое поколение

1.2
Второе поколение

1.3
Третье поколение

1.4
Четвертое поколение

1.5
Пятое поколение

2.
Дополнительный материал: Шестое поколение

Заключение

Список
литературы

Введение

Мир
сейчас находится на пороге информационного
общества. Началом такого перехода стало
внедрение в различные сферы деятельности
человека современных средств обработки
и передачи информации. Переход от
индустриального общества к информационному
осуществляется благодаря информатизации
общества – процессу, при котором
создаются условия, удовлетворяющие
потребности любого человека в получении
необходимой информации. Основную роль,
в информационном обществе, будет играть
система распространения, хранения и
обработки информации, образуя
информационную среду, которая может
обеспечить любому человеку доступ ко
всей информации.

Новые
технологии являются главной движущей
силой в дополнение к существующим силам
мирового рынка. Всего несколько ключевых
компонентов – микропроцессоры, локальные
сети, робототехника, специализированные
АРМ, датчики, программируемые контроллеры
– превратили в реальность концепцию
автоматизированного предприятия.

В
XXI веке образованный человек – это
человек, хорошо владеющий информационными
технологиями. Ведь деятельность людей
все в большей степени зависит от их
информированности, способности эффективно
использовать информацию. Для свободной
ориентации в информационных потоках
современный специалист любого профиля
должен уметь получать, обрабатывать и
использовать информацию с помощью
компьютеров, телекоммуникаций и других
средств связи. Об информации начинают
говорить как о стратегическом ресурсе
общества, как о ресурсе, определяющем
уровень развития государства.

1.Поколения развития эвм

Важной
вехой в истории ЭВМ является работа
Джона фон Неймана, опубликованная в
1956 году.

Впервые
возможность построения цифровой ВМ
была доказана английским математиком
Тьюрингом в 1936 году. Он показал, что
любой алгоритм реализуется с помощью
его дискретного автомата, который был
назван машиной Тьюринга. Независимо
это же доказал Пост (машина Поста).

Физически
первая цифровая ВМ была сконструирована
в 1935 году фирмой Белл (США). Такого же
вида машина была сконструирована для
специальных задач под руководством К.
Цузе (1941, Германия). Попытку построения
универсальной ЭВМ предпринял Эйкен
(США). Она получила название “Марк-1”.
Спроектирована и изготовлена в Гарвардском
университете.

Характеристики
ВМ (работали с 23 разрядными десятичными
цифрами):

  1. Программа
    вводилась покомандно с перфоленты.

  2. Сложение
    2-х чисел 0.3 секунды.

  3. Умножение
    2-х чисел 6 секунд.

  4. Деление
    2-х чисел 11 секунд.

Релейная
основа была ненадежна. Для ЭВМ были
разработаны специальные реле, на которых
была разработана ВМ “Марк-2”.

Реальный
отсчет ВТ ведется с перехода от реле к
триггерам. Триггер был изобретен в 1918
году в России Бонч-Бруевичем. Первая
ЭВМ, разработанная на электронных
компонентах, изготовлена в 1942 году
(“Эниак”) в Пенсильванском университете
под руководством Мокли и Эккерта. В 1943
году под руководством Тьюринга была
разработана ЭВМ “Колос”. После
рассекречивания архивов в 70-х годах
оказалось, что первую ЭВМ, которая
получила название “ABC”, разработал
в 1939 году американец болгарского
происхождения Атанасофф.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Реферат

«История развития компьютерной техники»

Работу выполнила ученица 7 класса

Тидорич Снежана

Филиал МБОУ Сосновская СШ №1

«Рожковская ОШ»

Учитель информатики Лобанов С. В.

Введение.

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития.

Начало эпохи.

Первая ЭВМ ENIAC была создана в конце 1945 г. в США.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC. Годом позже появилась американская ЭВМ EDVAC.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстродействием, оперативной памятью, способом ввода и вывода информации и т.д.

Первое поколение ЭВМ.

Первое поколение ЭВМ — ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Второе поколение ЭВМ.

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием

Третье поколение ЭВМ

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

Четвертое поколение ЭВМ

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Микропроцессор — это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера — процессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микро ЭВМ. Микро ЭВМ относятся к машинам четвертого поколения. Существенным отличием микро ЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры (ПК). Первый ПК появился на свет в 1976 году в США. С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей человеческой деятельности.

Другая линия в развитии ЭВМ четвертого поколения, это — суперкомпьютер. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Суперкомпьютер – это многопроцессорный вычислительный комплекс.

Заключение

Разработки в области вычислительной техники продолжаются. ЭВМ пятого поколения — это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень. В них будет возможным ввод с голоса, голосовое общение, машинное «зрение», машинное «осязание».

Машины пятого поколения — это реализованный искусственный интеллект

характеристики

Поколения ЭВМ

I

II

III

IV

Годы применения

В 50-х г.

В 60-х г.

В 70-х г.

В 80-х г.

Элементная база

Размеры

Количество ЭВМ в мире

Быстродействие

20тыс. оп/сек

100 тыс. оп/сек

1млн оп/сек

1млрд оп/сек

Объем оперативной памяти

Типичные модели

ENIAC

ФОРТРАН

IBM

ПК

Носитель информации

Содержание:

Предисловие

ЭВМ (электронно-вычислительная машина) (или компьютер) — это аппаратно-программное вычислительное устройство, реализованное на электронных компонентах и выполняющее заданные программой действия.

Термин ЭВМ сегодня практически не применяется, кроме как в историческом смысле.

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Labratorycomputers.jpg/1280px-Labratorycomputers.jpg

Рис. 1. Компьютеры

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

Счётно-решающие средства до появления ЭВМ

История вычислений уходит глубокими корнями вглубь веков так же, как и развитие человечества. Накопление запасов, делёж добычи, обмен — все подобные действия связаны со счётом. Для подсчёта люди использовали собственные пальцы, камешки, палочки и узелки. Потребность в поиске решений всё более и более сложных задач и, как следствие, все более сложных и длительных вычислений, поставила человека перед необходимостью находить способы, изобретать приспособления, которые могли бы ему в этом помочь. Исторически сложилось так, что в разных странах возникли собственные денежные единицы, меры веса, длины, объёмов и расстояний. Для перевода из одной системы измерения в другую требовались вычисления, которые чаще всего могли производить специально обученные люди, которых иногда приглашали из других стран. Это естественно привело к созданию изобретений, помогающих счёту.

Одним из первых устройств (VI—V вв. до н. э.), облегчающих вычисления, можно считать специальную доску для вычислений, названную «абак». Вычисления на ней производились перемещением камешков или костей в углубления досок из бронзы, камня или слоновой кости. Со временем эти доски стали расчерчивать на несколько полос и колонок. В Греции абак существовал уже в V веке до н. э., у японцев он назывался «серобян», у китайцев — «суанпан».

В Древней Руси при счёте применялось устройство, похожее на абак, называемое «русский шёт». В XVII веке этот прибор уже обрёл вид привычных русских счёт.

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

https://upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Russian_abacus.svg/800px-Russian_abacus.svg.png

Рис.2. Русские счёты

В начале XVII столетия, когда математика стала играть ключевую роль в науке, всё острее ощущалась необходимость в изобретении счётной машины. И в середине века молодой французский математик и физик Блез Паскаль создал «суммирующую» машину, названной Паскалиной, которая кроме сложения выполняла и вычитание.

В 1670—1680 гг. немецкий математик Готфрид Лейбниц конструировал счётную машину, которая выполняла все арифметические действия. В течение следующих двухсот лет было изобретено и построено ещё несколько

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

подобных счётных устройств, которые, однако, из-за своих недостатков, в том числе из-за медлительности в работе, не получили широкого распространения.

Лишь в 1878 году русский ученый П. Чебышёв предложил счётную машину, выполнявшую сложение и вычитание многозначных чисел. Наибольшую популярность получил тогда арифмометр, сконструированный петербургским инженером Однером в 1874 году. Конструкция прибора оказалась весьма удачной, так как позволяла довольно быстро выполнять все четыре арифметических действия.

В 30-е годы XX столетия в Советском Союзе был разработан более совершенный арифмометр — «Феликс». Эти счётные устройства использовались несколько десятилетий, став основным техническим средством облегчения человеческого труда. Выпускались с 1929 по 1978 год.

Рис.3. Счётная машинка Феликс-М

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

Создание первых компьютеров

В 1812 году английский математик и экономист Чарльз Бэббидж начал работу над созданием так называемой «разностной» машины, которая, по его замыслам, должна была не просто выполнять арифметические действия, а проводить вычисления по программе, задающей определённую функцию. В качестве основного элемента своей машины Бэббидж взял зубчатое колесо для запоминания одного разряда числа (всего таких колёс было 18). К 1822 году учёный построил небольшую действующую модель и рассчитал на ней таблицу квадратов.

В 1834 году Бэббидж приступил к созданию «аналитической» машины. Его проект содержал более 2000 чертежей различных узлов. Машина Бэббиджа предполагалась как чисто механическое устройство с паровым приводом. Она состояла из хранилища для чисел («склад»), устройства для производства арифметических действий над числами (Бэббидж назвал его «фабрикой») и устройства, управляющего операциями машины в нужной последовательности, включая перенос чисел из одного места в другое; были предусмотрены средства для ввода и вывода чисел. Бэббидж работал над созданием своей машины до конца своей жизни (он умер в 1871 году), успев сделать лишь некоторые узлы своей машины, которая оказалась слишком сложной для того уровня развития техники.

В 1842 году в Женеве была опубликована небольшая рукопись итальянского военного инженера Л. Ф. Менабреа «Очерк об аналитической машине, изобретённой Чарльзом Бэббиджем», переведённая в последствии ученицей и помощницей Бэббиджа дочерью Дж. Г. Байрона — леди Адой Лавлейс. При содействии Бэббиджа Ада Лавлейс составляла первые программы для решения систем двух линейных уравнений и для вычисления чисел Бернулли. Леди Лавлейс стала первой в мире программисткой.

После Бэббиджа значительный вклад в развитие техники автоматизации счёта внёс американский изобретатель Г. Холлерит, который в 1890 году впервые построил ручной перфоратор для нанесения цифровых данных на перфокарты и ввёл механическую сортировку для раскладки этих перфокарт в зависимости от места пробива. Им была построена машина — табулятор, которая прощупывала отверстия на перфокартах, воспринимала их как соответствующие числа и подсчитывала их. Табуляторы Холлерита были использованы при переписи населения в США, Австрии, Канаде, Норвегии и

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

в др. странах. Они же использовались при первой Всероссийской переписи населения в 1897 году, причём Холлерит приезжал в Россию для организации этой работы. В 1896 году Холлерит основал всемирно известную фирму Computer Tabulating Recording, специализирующуюся на выпуске счетно-перфорационных машин и перфокарт. В дальнейшем фирма была преобразована в фирму International Business Machines (IBM), ставшую сейчас передовым разработчиком компьютеров.

Новый инструмент — ЭВМ — служит человеку пока лишь чуть больше полувека. ЭВМ — одно из величайших изобретений середины XX века, изменивших человеческую жизнь во многих её проявлениях. Вычислительная техника превратилась в один из рычагов, обеспечивающих развитие и достижения научно-технического прогресса.

Первым создателем автоматической вычислительной машины считается немецкий учёный К. Цузе. Работы им начаты в 1933 году, а в 1936 году он построил модель механической вычислительной машины, в которой использовалась двоичная система счисления, форма представления чисел с «плавающей» запятой, трёхадресная система программирования и перфокарты. В качестве элементной базы Цузе выбрал реле, которые к тому времени давно применялись в различных областях техники. В 1938 году Цузе изготовил модель машины Z1 на 16 слов; в следующем году модель Z2, а ещё через два года он построил первую в мире действующую вычислительную машину с программным управлением (модель Z3), которая демонстрировалась в Германском научно-исследовательском центре авиации. Это был релейный двоичный компьютер, имеющий память на 64 22-разрядных числа с плавающей запятой: 7 разрядов для порядка и 15 разрядов для мантиссы. К несчастью, все эти образцы машин были уничтожены во время бомбардировок в ходе Второй мировой войны. После войны Цузе изготовил модели Z4 и Z5. К. Цузе в 1945 году создал язык Plankalkul (от немецкого «исчисление планов»), который относится к ранним формам алгоритмических языков. Этот язык был в большей степени машинно-ориентированным, но по некоторым возможностям превосходил АЛГОЛ.

Независимо от Цузе построением релейных автоматических вычислительных машин занимались в США Д. Штибитц и Г. Айкен.

Д. Штибитц, тогда работавший в фирме Bell, собрал на телефонных реле первые суммирующие схемы. В 1940 году вместе с С. Уильямсом Штибитц построил «вычислитель комплексных чисел», или релейный интерпретатор, который впоследствии стал известен как специализированный релейный компьютер «Bell-модель 1». В этом же году машина демонстрировалась на заседании Американского математического общества, где были проведены её

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

первые промышленные испытания. В последующие годы были созданы ещё четыре модели этой машины. Последняя из них разработана Штибитцем в 1946 году (модель V) — это был компьютер общего назначения, содержащий 9000 реле и занимающий площадь почти 90 м2, вес устройства составлял 10 т.

Другую идею релейного компьютера выдвинул в 1937 году аспирант Гарвардского университета Г. Айкен. Его идеей заинтересовалась фирма IBM. В помощь Айкену подключили бригаду инженеров во главе с К. Лейком. Работа по проектированию и постройки машины, названной «Марк-1», началась в 1939 году и продолжалась 5 лет. Машина состояла из стандартных деталей, выпускаемых IBM в то время. Электронные лампы при создании вычислительной машины были впервые применены американским профессором физики и математики Д. Атанасовым. Атанасов работал над проблемой автоматизации решения больших систем линейных уравнений. В декабре 1939 году Атанасов окончательно сформулировал и осуществил на практике свои основные идеи, создав вместе с К. Берри работающую настольную модель машины. После этого он приступил к созданию машины, способной решить систему с 29 неизвестными. Память машины была энергоёмкая — использовалось 1632 бумажных конденсатора. Всего использовалось 300 электронных ламп. К весне 1942 г. когда монтаж машины был почти завершён, США уже находилось в состоянии войны с Германией, и, к несчастью, проект был свёрнут.

В 1942 году профессор электротехнической школы Мура Пенсильванского университета Д. Маучли представил проект «Использование быстродействующих электронных устройств для вычислений», положивший начало созданию первой электронной вычислительной машины ENIAC. Около года проект пролежал без движения, пока им не заинтересовалась Баллистическая исследовательская лаборатория армии США. В 1943 году под руководством Д. Маучли и Д. Эккерта были начаты работы по созданию ENIAC, демонстрация состоялась 15 февраля 1946 года. Новая машина имела «впечатляющие» параметры: 18000 электронных ламп, площадь 90 × 15 м2, весила 30 т и потребляла 150 кВт. ENIAC работала с тактовой частотой 100 кГц и выполняла сложение за 0,2 мс, а умножение — за 2,8 мс, что было на три порядка быстрее, чем это могли делать релейные машины. По своей структуре ЭВМ ENIAC напоминала механические вычислительные машины.

Долгое время считалось, что ENIAC единственный электронный компьютер, но в 1975 году Великобритания сообщила о том, что уже с декабря 1945 года в государственном институте Блетчли-Парк работал первый программируемый ЭВМ «Колосс», но для правильной оценки компьютера Англия не предоставила много данных.

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

С точки зрения архитектуры ЭВМ с хранимой в памяти программой революционными были идеи американского математика, члена Национальной АН США и американской академии искусств и наук Джона фон Неймана (1903—1957). Эти идеи были изложены в статье «Предварительное рассмотрение логической конструкции электронного вычислительного устройства», написанная вместе с А. Берксом и Г. Голдстайном и опубликованная в 1946 году.

Архитектура фон Неймана

Вот как представлял фон Нейман свою ЭВМ:

  • Машина должна состоять из основных органов: орган арифметики, памяти, управления и связи с оператором, чтобы машина не зависела от оператора.
  • Она должна запоминать не только цифровую информацию, но и команды, управляющие программой, которая должна проводить операции над числами.
  • ЭВМ должна различать числовой код команды от числового кода числа.
  • У машины должен быть управляющий орган для выполнения команд, хранящихся в памяти.
  • В ней также должен быть арифметический орган для выполнения арифметических действий.
  • И, наконец, в её состав должен входить орган ввода-вывода.

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

https://upload.wikimedia.org/wikipedia/commons/3/3c/%D0%90%D1%80%D1%85%D0%B8%D1%82%D0%B5%D0%BA%D1%82%D1%83%D1%80%D0%B0_%D1%84%D0%BE%D0%BD_%D0%9D%D0%B5%D0%B9%D0%BC%D0%B0%D0%BD%D0%B0.png

Рис.4. Архитектура фон Неймана

В 1945 г. Англия приступила к созданию первой машины с неймановским типом памяти. Работа была возглавлена Т. Килбрном из Манчестерского университета и Ф. Вильямсем из Кембриджского. Уже 21 июня 1948 года Т. Килбрн и Ф. Вильямс просчитали первую программу на ЭВМ «Марк-1» (одинаковое название с машиной Айкена).

Другая группа во главе с М. Уилксом 6 мая 1949 года произвела первые расчёты на машине того же типа — EDSAC.

Вскоре были построены ещё машины EDVAC (1950 г.), BINAC и SEAC.

В ноябре месяце того же года в Киевской лаборатории моделирования и вычислительной техники Института электротехники АН УССР под руководством академика С. А. Лебедева была создана первая советская ЭВМ — МЭСМ. МЭСМ была принципиально новой машиной, так как профессор Лебедев применил принцип параллельной обработки слов.

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

Ламповые ЭВМ

Разработка первой серии электронной машины UNIAC (Universal Automatic Computer) начата примерно в 1947 году. Д. П. Эккертом и Д. Мочли, основавшими фирму Eckert-Mauchly. Первый образец UNIAC-1 был построен для Бюро переписи США в 1951 г. UNIAC был создан на базе ЭВМ ENIAC и EDVIAC. Работала с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Ёмкость памяти — 1000 12-разрядных десятичных чисел.

Следующим шагом было увеличение быстродействия памяти, для чего учёные стали исследовать свойства ферритовых колец. Впервые память на магнитных сердечниках была применена в машине «Whirlwind-1». Она представляла собой два куба с 32 × 32 × 17 сердечниками, обеспечивающих хранение 2048 слов для 16-разрядных двоичных чисел.

В разработку электронных компьютеров включилась и фирма IBM, которая в 1952 году выпустила первый промышленный компьютер IBM-701. Машина содержала 4000 электронных ламп и 12 000 германиевых диодов. В 1956 году IBM выпустила новый серийный компьютер — IBM-704, отличавшийся высокой скоростью работы.

После ЭВМ IBM-704 была выпущена машина IBM-709, в архитектурном плане приблизившаяся к машинам второго и третьего поколения.

В 1956 году IBM разработала плавающие магнитные головки на воздушной подушке, изобретение которых позволило создать новый тип памяти — дисковые запоминающие устройства (ЗУ). Впервые ЗУ на дисках появились в машине IBM-305 и RAMAC-650, которая имела пакет из 50 металлических дисков с магнитным покрытием, вращавшихся со скоростью 1200 об/мин. На поверхности диска размещалось 100 дорожек для записи данных 10 000 знаков каждая.

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

Вслед за первым серийным компьютером UNIAC-1 фирма REMINGTON-RAND в 1952 году выпустила ЭВМ UNIAC-1103, которая работала в 50 раз быстрее.

В октябре 1952 году группа сотрудников фирмы REMINGTON-RAND предложила алгебраическую форму записи алгоритмов; на основе этого офицер военно-морских сил США и руководитель группы программистов, капитан Грейс Хопперт разработала первую программу-компилятор A-0.

Фирма IBM также сделала первые шаги в области автоматизации программирования, создав в 1953 году для машины IBM-701 «Систему быстрого кодирования». В 1957 году группа Д. Бэкуса завершила работу над ставшим впоследствии популярным языком программирования высокого уровня ФОРТРАНОМ. Он способствовал расширению сферы деятельности компьютеров.

В 1951 году фирма Ferranti стала выпускать машину «Марк-1». А через 5 лет выпустила ЭВМ «Pegasus», использующую концепцию регистров общего назначения.

В СССР в 1948 году проблемы развития вычислительной техники становятся общегосударственной задачей.

В 1950 году в Институте точной механики и вычислительной техники (ИТМ и ВТ АН СССР) организован отдел цифровой ЭВМ для разработки и создания большой ЭВМ. Эту работу возглавил С. А. Лебедев (1902—1974). В 1951 году здесь была спроектирована машина БЭСМ, а в 1952 году началась её эксплуатация. В проекте вначале предлагалось использовать трубки Вильямса, но до 1955 г. в качестве элемента памяти использовали ртутные линии. БЭСМ могла совершать 8 000 оп/с. Серийно она стала выпускаться с 1956 года под названием БЭСМ-2.

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

Транзисторные ЭВМ

В середине 1950-х годов, когда ламповые компьютеры достигли «насыщения», ряд фирм объявил о работах по созданию транзисторных ЭВМ. Первоначально это вызвало скептицизм из-за того, что производство полупроводников будет сложным и дорогостоящим. Однако этого не случилось — постоянно совершенствовались методы производства транзисторов.

В 1955 году в США было объявлено о создании цифрового компьютера TRADIC, построенного на 800 транзисторах и 11 000 германиевых диодах. В этом же году фирма объявила о создании полностью транзисторной ЭВМ. Первая такая машина «Philco-2000» была сделана в ноябре 1958 года, она содержала 56 тыс. транзисторов, 1 200 диодов, но всё же в её составе было 450 электронных ламп. «Philco-2000» выполняла сложение за 1,7 мкс, умножение — за 40,3 мкс.

В Англии транзисторная ЭВМ «Elliot-803» была выпущена в 1958 году, в ФРГ — «Simens-2002» и в Японии H-1 — в 1958 году, во Франции и Италии — в 1960 году. В СССР группа разработчиков во главе с Е. Л. Брусиловским в 1960 году в НИИ математических машин в Ереване завершила разработку полупроводниковой ЭВМ «Раздан-2», её серийный выпуск начат в 1961 году.

В это же время появились компьютеры и не на полупроводниках. Так, в Японии была выпущена ЭВМ «Senac-1» на параметронах, в СССР — «Сетунь», а во Франции — CAB-500 на магнитных элементах. «Сетунь», разработанная в МГУ под руководством Н. П. Брусенцова, стала единственной серийной ЭВМ, работавшая в троичной системе счисления.

Значительным событием в конструировании машин второго поколения стали ЭВМ «Atlas» (выпущена в Англии в 1961 году), в которой были применены концепции виртуальной (кажущейся) памяти, «Stretch» и CDC-6600 (США) и БЭСМ-6 (СССР).

В 1960 году фирма IBM разработала мощную вычислительную систему «Stretch» (IBM-7030), разработчики которой добились 100-кратного увеличения быстродействия: в её состав входило 169 тыс. дрейфовых транзисторов с тактовой частотой переключения в 100 МГц.

Большой вклад в развитие компьютеров второго поколения внесла фирма Control Data, разработавшая в 1960 году ЭВМ CDC-6600 (первый образец

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

был установлен в Лос-Анжелесе в 1964 г.). В архитектуре CDC-6600 было использовано новое решение — многопроцессорная обработка: многочисленные арифметико-логические устройства (АЛУ) с десятью периферийными процессорами, что обеспечивало машине производительность более чем 3 млн оп/с.

В СССР после выпуска первой серийной ЭВМ второго поколения «Раздан-2» было разработано ещё около 30 моделей по такой же технологии. Минским заводом вычислительной техники им. Серго Орджоникидзе в 1963 году была выпущена первая транзисторная ЭВМ «Минск-2», а затем её модификации: «Минск-22», «Минск-22М», «Минск-23» и в 1968 году — «Минск-32», которые долгое время играли главную роль в автоматизации различных отраслей народного хозяйства.

В Институте кибернетики АН УССР под руководством В. М. Глушкова в 60-е гг. ХХ века разработан ряд различных малых машин: «Проминь» (1962 г.), «Мир», «Мир-1» (1965 г.) и «Мир-2» (1969 г.) — впоследствии применяемых в вузах и научно-исследовательских организациях.

В 1964 году в Ереване также были созданы малые ЭВМ серии «Наири», отличающихся от ЭВМ «Мир» некоторыми структурными особенностями.

В том же году в Пензе была разработана и пущена в производство серия машин «Урал» (главный конструктор Б. И. Рамеев), позже в 1965 и 1967 гг. появились модификации — «Урал-11» и «Урал-16». ЭВМ серии «Урал» имели унифицированную систему связи с периферийными устройствами.

Машина БЭСМ-6 состояла из 60 тыс. транзисторов и 200 тыс. полупроводниковых диодов, имела высокую надёжность и высокое быстродействие — 1 млн оп/с.

При появлении ЭВМ второго поколения разработчики занялись разработкой и создание языков программирования, обеспечивающих удобный набор программ.

Одним из первых языков программирования был АЛГОЛ (создан группой ученых американской Ассоциацией по вычислительной техники).

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

Эпоха интегральных схем

В декабре 1961 года специальный комитет фирмы IBM, изучив техническую политику фирмы в области разработки вычислительной техники, представил план-отчёт создания ЭВМ на микроэлектронной основе. Во главе реализации плана встали два ведущих разработчика фирмы — Д. Амдал и Г. Блау. Работая с проблемой производства логических схем, они предложили при создании семейства использовать гибридные интегральные схемы, для чего при фирме в 1963 году было открыто предприятие по их выпуску.

В начале апреля 1964 года фирма IBM объявила о создании шести моделей своего семейства IBM-360 («System-360»), появление которого ознаменовало появление компьютеров третьего поколения. За 6 лет существования семейства фирма IBM пустила более 33 тыс. машин. Затраты на научно-исследовательские работы составили примерно полмиллиарда долларов (по меркам того времени — сумма была просто огромной). При создании семейства «System-360» разработчики встретились с трудностями при создании операционной системы, которая должна была отвечать за эффективное размещение и использование ресурсов ЭВМ. Первая из них, универсальная операционная система называлась DOS, предназначенная для малых и средних ЭВМ, позже была выпущена операционная система OS/360 — для больших. До конца 60-х гг. фирма IBM в общей сложности выпустила более 20 моделей семейства IBM-360. В модели 85 впервые в мире была применена кэш-память (от фр. cache — тайник), а модель 195 стала первой ЭВМ на монолитных схемах.

В конце 1970 года фирма IBM стала выпускать новое семейство вычислительных машин — IBM-370, которое сохранило свою совместимость с IBM-360, но и имело ряд изменений: они были удобны для комплектования многомашинных и многопроцессорных вычислительных систем, работающих на общем поле оперативной памяти.

Почти одновременно с IBM компьютеры третьего поколения стали выпускать и другие фирмы. В 1966—1967 гг. их выпускали фирмы Англии, ФРГ и Японии. В Англии фирмой ICL был основан выпуск семейства машин «System-4» (производительность от 15 до 300 тыс. оп/с). В ФРГ были выпущены машины серии 4004 фирмы Siemens (машины этого семейства полностью копировали ЭВМ семейства «Spectra-70»), а в Японии — машины серии «Hytac-8000», разработанные фирмой Hitachi (это семейство являлось модификацией семейства «Spectra-70»). Другая японская фирма Fujitsu в 1968 году объявила о создании серии ЭВМ «FACOM-230». В Голландии

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

фирма Philips Gloeilampenfabriken, образованная в 1968 году для выпуска компьютеров, стала выпускать компьютеры серии P1000, сравнимой с IBM-360.

В декабре 1969 года ряд стран (НРБ, ВНР, ГДР, ПНР, СССР и ЧССР, а также в 1972 году — Куба, а в 1973 году — СРР) подписали Соглашение о сотрудничестве в области вычислительных технологий. На выставке «ЕСЭВМ-73» (1973 г.) были показаны первые результаты этого сотрудничества: шесть моделей компьютеров третьего поколения и несколько периферийных устройств, а также четыре ОС для них. С 1975 года начался выпуск новых модернизированных моделей ЕС-1012, ЕС-1022, ЕС-1032, ЕС-1033, имеющих наилучшее соотношение производительность/стоимость, в которых использовались новые логические схемы и схемы полупроводниковой памяти. Вскоре появились машины второй серии сотрудничества. Наиболее ярким представителем его была мощная модель ЕС-1065, представлявшая собой многопроцессорную системы, состоящую из четырёх процессоров и имевшую память 16 Мбайт. Машина была выполнена на интегральных схемах ИС-500 и имела производительность 4—5 млн оп/с.

С машинами третьего поколения связано ещё одно значительное событие — разработка и внедрение визуальных устройств ввода-вывода алфавитно-цифровой и графической информации с помощью электронно-лучевых трубок — дисплеев, использование которых позволило достаточно просто реализовать возможности вариантного анализа. История появления первых прототипов современных дисплеев относится к послевоенным годам. В 1948 году Г. Фуллер, сотрудник лаборатории вычислительной техники Гарвардского университета, описал конструкцию нумероскопа. В этом приборе, под руководством ЭВМ, на экране электронно-лучевой трубки появлялась цифровая информация. Дисплей принципиально изменил процесс ввода-вывода данных и упростил общение с компьютером.

В 1970-х годах благодаря появлению микропроцессоров стало возможным осуществлять буферизацию как данных, принимаемых с экранного терминала, так и данных, передаваемых ЭВМ. Благодаря чему регенерацию изображения на экране удалось реализовать средствами самого терминала. Появилась возможность редактирования и контроля данных перед их передачей в ЭВМ, что уменьшило число ошибок. На экране появился курсор — подвижная метка, инициализирующая место ввода или редактирования символа. Экран дисплея стал цветным. Появилась возможность отображения на экране сложных графических изображений — это дало возможность для создания красочных игр (хотя первые компьютерные игры появились ещё в

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

1950-е годы, но были псевдографическими) и предназначенных для работы с графикой программ.

Четвёртое поколение

Это поколение ЭВМ связано с развитием микропроцессорной техники. В 1971 году компания Intel выпустила микросхему Intel-4004 — первый микропроцессор и родоначальник доминирующего и самого известного сегодня семейства (Intel x86 (первый микропроцессор Intel 8086)).

История четвёртого поколения началась с того, что японская фирма Busicom (ныне уже не существует) заказала Intel Corporation изготовить 12 микросхем для использования их в калькуляторах различных моделей. Малый объём каждой партии микросхем увеличивал стоимость их разработки. Однако разработчикам удалось создать такое устройство — микропроцессор, который мог использоваться во всех микрокалькуляторах. Его тактовая частота — около 0,75 МГц. Процессор был четырёхразрядным, то есть позволял кодировать все цифры и специальные символы, что было достаточно для калькулятора.

Однако компьютеры работают не только с цифрами, но и с текстом. Для того чтобы закодировать все цифры, буквы и специальные символы, потребовался бы 8-разрядный процессор. Он появился в 1972 году и назывался Intel-8008, а в 1974 году появился процессор Intel-8080. Он был выполнен по NMOS-технологии (англ. N-cannel Metal Oxide Semiconductor), его тактовая частота составила 2 МГц, при этом в самом микропроцессоре было реализовано деление чисел.

Таким образом, история развития электроники подошла к созданию персональных компьютеров (ПК). Во второй половине 70-х гг. появилась потребность в компьютерах для одного рабочего места. Первые такие ПК базировались на 8-разрядных процессорах — Intel-8080 и процессорах фирмы Zilog Corporation — Z80. ОС для них разработала компания Digital Research CP/M (англ. Control Program for Microcomputers).

Создателями первого ПК были два молодых американских техника: Стивен Джобс, работавший в фирме Atari, и Стив Возняк из компании

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

HewlettPackard. Летом 1976 года в гараже родителей Джобса они соорудили первый ПК и назвали его «Apple-I» — «яблоко». Для того чтобы достать необходимые детали Джобсу пришлось продать свой автомобиль «Фольксваген». Apple-I не имел ни клавиатуры, ни корпуса.

В апреле 1977 года они сконструировали ещё один ПК — Apple-II (в это же время появилась и знаменитая эмблема фирмы Apple — надкушенное разноцветное яблоко), он имел одноплатную конструкцию и шину расширения, позволяющую подсоединять дополнительные устройства. Клавиатура была помещена в отдельный корпус. В качестве центрального процессора был взят надёжный 8-разрядный MOS 6502. Память составляла всего лишь 8 Кбайт, но для её увеличения использовалась магнитофонная лента, запускаемая с обычного кассетного магнитофона. В дальнейшем к Apple-II были разработаны графические видеоадаптеры, дисковая ОС для управления ОП и нижний регистр для символов, которые могли размещаться на экране в 80 столбцах.

https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Apple-II.jpg/800px-Apple-II.jpg

Рис.5. Apple-II

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

За 10 с не большим лет этот ПК фирмы Apple (образована в 1976 году) завоевал рынок — было продано более 2 млн экземпляров. Цена его колебалась в районе 1000 долларов. Своим коммерческим успехом он обязан в значительной степени его открытой архитектуре и модульной системе, позволяющей расширять систему за счёт добавления новых устройств.

К 1980 году стал очевиден успех идеи ПК. Их рынок достиг нескольких десятков тысяч в год. Крупнейшая электронная корпорация США IBM, лидер в производстве компьютеров, уже совершила одну стратегическую ошибку, уступив рынок мини-ЭВМ компании Digital Equipment Corporation (DEC). Ещё одним поводом для беспокойства стал успех компьютеров фирмы Apple Computer. И IBM решает быстро захватить рынок ЭВМ. Сомнений не было, что для этого нужно создать новую модель ПК. Для этого нужен был новый процессор (взамен устаревшего MOS 6502 или Zilog Z80) — им стал процессор Intel-8088.

В 1976 году компания Intel начала разработку микропроцессора Intel-8086, который был выпущен в 1978 году. Размер его регистров был увеличен вдвое, что дало возможность увеличить в 10 раз производительность по сравнению с 8080. Кроме того, размер адресной шины был увеличен до 16 бит, чем опередил своё время — ему дополнительно нужна 16-разрядная микросхема.

В 1979 году был выпущен новый микропроцессор — Intel-8088, не отличавшийся от своего предшественника, но он имел 8-разрядную шину данных — это позволяло использовать популярные в то время 8-разрядные микросхемы. Первоначально процессор работал частотой в 4,77 МГц, но впоследствии другие фирмы разработали совместимые с ним 8- и 10-мегагерцовые процессоры.

12 августа 1981 года IBM впервые представила свой ПК, который так и назывался IBM PC (англ. Personal Computer). Он имел процессор Intel-8088, два дисковода для гибких дисков по 160 Кбайт и ОП (оперативную память) 64 КБайт с возможностью расширения до 512 Кбайт. В ПЗУ (постоянное запоминающее устройство) PC был помещён язык программирования Бейсик. IBM разработала свой собственный дисплей, который имел хорошую контрастность, символы на нём легко читались и не утомляли глаз мерцанием.

К 1982 году невероятная популярность нового компьютера привела к созданию многочисленных аналогов. К 1984 году IBM-совместимых компьютеры выпускали более 50 компаний, а в 1986 году объём продаж клонов превысил собственный объём продаж фирмы IBM. Архитектура IBM

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

PC завоевала весь мир: никакой другой фирме, будь-то Apple Macintosh, NeXT, Amiga или другим, не удалось занять место рядом с IBM. Хотя компьютеры фирм Apple и Amiga тоже были очень популярны.

https://upload.wikimedia.org/wikipedia/commons/3/32/IBM_5150_PC.JPG

Рис. 6. IBM 5150 PC

В 1983 году IBM выпустила новую модель PC XT (англ. eXtended Technology) с жёстким диском (винчестером) ёмкостью 10 Мбайт и оперативной памятью 640 Кбайт. Работал PC под управлением MS DOS компании Microsoft — ныне крупнейшего производителя программного обеспечения.

Презентация нового PC — IBM PC AT (англ. Advanced Technology) — состоялась в 1984 году. AT был построен на основе нового микропроцессора

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

— Intel-80286, который был представлен в 1982 году. Микропроцессор имел 16-разрядную шину данных и 16-битный внутренние регистры. Первый Intel-80286 работал на частоте в 6 МГц, впоследствии доведённой до 20 МГц. В общем, AT в 5 раз был производительнее, чем XT. Главным преимуществом Intel-80286 была способность работать с дополнительной памятью. Он имел 24-разрядную адресную шину, что позволяло работать с ОП до 16 Мбайт. Intel-80286 мог работать с виртуальной памятью размером до 1 Гбайта.

Тем временем в январе 1984 г. состоялась презентация первого компьютера Macintosh компании Apple Computer. Эти компьютеры сыграли значительную роль в развитии PC. Он имел 9-дюймовый монитор с высокой

чёткостью изображения и занимал мало места на рабочем столе, число соединительных кабелей в системе было минимальным. В качестве центрального процессора был использован микропроцессор 68000 компании Motorola, в последующих моделях был использован микропроцессор Motorola 68030, а в некоторых они использовались совместно с математическим сопроцессором, а также цветной монитор. Такие PC были очень удобны в домашней работе.

https://upload.wikimedia.org/wikipedia/commons/e/e3/Macintosh_128k_transparency.png

Рис. 7. Macintosh 128k

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

В 1985 году компания Intel анонсировала первый 32-разрядный процессор Intel-80386 (Intel-80386DX). Он имел все положительные качества своих предшественников. Вся система команд Intel-80286 полностью совместима с набором команд 386-го. Новый процессор был полностью 32-разрядным и работал на частоте в 16 МГц (позже появились модели с 25, 33 и 40 МГц). С увеличением шины данных до 32 бит число адресных линий было также увеличено до 32, что позволило микропроцессору обращаться прямо к 4 Гбайт физической памяти или к 64 Тбайт (1 Терабайт = 1024 Гбайт) виртуальной памяти. Для поддержания совместимости с Intel-8086 процессор работал в защищённом режиме (англ. Protect mode), также поддерживался реальный режим (англ. Real mode), основным отличием была возможность переходить из одного режима работы в другой без перезагрузки компьютера. Появился также новый режим — виртуальный (англ. Virtual mode) — позволявший микропроцессору работать так же, как и неограниченное количество Intel-8086. Это давало возможность процессору выполнять сразу несколько программ.

В 1988 году компанией Intel был разработан микропроцессор Intel-80386SX, в общем ничем не отличавшийся от Intel-80386DX, однако он стоил дешевле и использовал 16-разрядную внешнюю шину данных.

Первая персональная ЭВМ на основе Intel-80386 была изготовлена фирмой Compaq Computers. В апреле 1987 года IBM объявила о создании семейства PS/2 с шиной MCA (англ. MicroChannel Architecture). До этого компьютеры PC AT использовали шину ISA (англ. Industry Standard Architecture). Она была 32-разрядная и имела частоту 10 МГц. В 1989 году девять компаний-клонмэйкеров (AST, Epson, HewlettPackard, NEC, Olivetti, Tandy, Wyse и Zenith) разработали шину EISA (англ. Extended Industry Standard Architecture). Она, как и MCA, имела разрядность 32, но в отличие от неё EISA была полностью совместима с ISA.

В 1989 году появляется новая разработка компании Intel — микропроцессор Intel-80486 (Intel-80486DX). Этот процессор был полностью совместим с семейством Intel-80×86, содержал в себе математический сопроцессор и 8

Кбайт кэш-памяти. 80486 был более совершенен по сравнению с микропроцессором Intel-80386, его тактовая частота составляла 33 МГц.

В 1991 году Intel представила процессор Intel-80486SX, у которого отсутствовал математический сопроцессор. А в 1992 году — процессор Intel-80486DX2, работавший с удвоенной тактовой частотой — 66 МГц. Впоследствии вышли процессоры DX4 с тактовой частотой 75 и 100 МГц.

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

Кроме компании Intel 486-е процессоры стали выпускать и другие фирмы, например фирмы AMD (англ. Advanced Micro Devices) и Cyrix.

Эти фирмы вносили некоторые усовершенствования в них и продавали по цене от 100 долларов. Вскоре для 486-х систем стала стандартом шина VL-Bus, разработанная ассоциацией VESA (Video Electronics Standard Association). Пропускная способность составила 132 Мбайт/с.

Создание компьютеров на основе процессоров семейства Intel-80486 позволило запускать многочисленное программное обеспечение.

Второе место после PC фирмы IBM занимает фирма Apple Computer с PC Macintosh. Компьютеры выпускались на основе процессоров фирмы Motorola. Эти компьютеры очень удобны при использовании дома, в офисе и для обучения в школе. Последние модели — LC 475, LC 575 и LC 630 — основанные на процессорах Motorola 68LC040, оснащаются дисководом CD-ROM.

Самые производительные компьютеры Macintosh серии Quadra, оснащались процессором 68040 с тактовой частотой до 33 МГц, сопроцессором, имели возможность расширения ОЗУ до 256 Мбайт. Quadra в основном использовались в полиграфическом и рекламном деле, а также в создании мультимедиа-приложений и других задачах, требующих больших вычислительных мощностей и обработки значительных объёмов данных; они также подходят для создания программного обеспечения. С 1993 года выпускаются компьютеры подсемейства AV, которые имели стандартный видеовходы и видеовыходы, что давало возможность выводить информацию как на экран стандартного дисплея, так и на экран обычного телевизора.

Кроме вышеперечисленных моделей Apple Computer выпускает портативные компьютеры серии PowerBook. Наибольшую популярность завоевали компьютеры семейства Performa, которые оснащались факс-модемом, что, было удобно для надомной работы.

В 1993 году компания Intel начала промышленный выпуск нового процессора — Intel Pentium (Intel не стал присваивать ему номер 80586).

Первые модели работали на тактовой частоте 60 и 66 МГц и объединяли в себе до 3,3 млн транзисторов. Pentium — это первый 64-разрядный суперскалярный процессор с RISC-ядром, изготовленный по 0,8-микронной технологии BiCMOS. Его основу составляет два пятиступенчатых конвейера, позволяющих выполнять две команды за один такт. Один конвейер выполнял любые операции, как с целочисленными, так и с числами с плавающей

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

точкой, второй выполняет часть целочисленных команд. Все арифметические действия — сложение, вычитание, умножение и деление — реализованы аппаратно. Сочетание этих решений резко повысило производительность процессора, ускорить вычисления за счёт уменьшения обращений к ОЗУ. Кэширование обеспечивают два внутренних буфера кэш-памяти — по 8 Кбайт для команд и данных, что позволило работать контейнерам команд не только по чтению, но и по записи. Следующая новинка — система предсказываний ветвлений, благодаря которой при переходе в области памяти запоминается адрес перехода и при повторном обращении переход по этому адресу происходит быстрее.

Впоследствии появились модели с частотой 90 и 100 МГц. Однако вскоре обнаружились ошибки в устройстве деления, и компании Intel пришлось опубликовать подробное описание этого дефекта. После этого скандала практически все процессоры Pentium стали тестировать, и в прайс-листах появилась надпись BUG FREE!, что буквально можно перевести как «свободно от ошибок».

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

Заключение

Завершая работу над рефератом можно прийти к выводу, что ЭВМ появились, когда возникла острейшая необходимость в очень трудоемких и точных расчетах, особенно в таких областях науки и техники, как: атомная физика и теория динамик полета и управления летательными аппаратами, в исследовании аэродинамики больших скоростей. Уровень прогресса здесь во многом зависел от возможностей выполнения сложных расчетов.

ЭВМ в своем развитии прошли несколько поколений.

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

Ccылки:

  1. https://ru.wikibooks.org/wiki/%D0%98%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F_%D1%80%D0%B0%D0%B7%D0%B2%D0%B8%D1%82%D0%B8%D1%8F_%D0%AD%D0%92%D0%9C
  2. https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D1%81%D0%BE%D0%B2%D0%B5%D1%82%D1%81%D0%BA%D0%B8%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BD%D1%8B%D1%85_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC
  3. https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D1%81%D0%BE%D0%B2%D0%B5%D1%82%D1%81%D0%BA%D0%B8%D1%85_%D0%B4%D0%BE%D0%BC%D0%B0%D1%88%D0%BD%D0%B8%D1%85_%D0%B8_%D1%83%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BE%D0%B2
  4. https://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D1%81%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80
  5. https://ru.wikipedia.org/wiki/%D0%98%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F_%D0%BF%D0%B5%D1%80%D1%81%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BE%D0%B2
  6. https://ru.wikipedia.org/wiki/%D0%94%D0%BE%D0%BC%D0%B0%D1%88%D0%BD%D0%B8%D0%B9_%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80
  7. https://ru.wikipedia.org/wiki/%D0%98%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9_%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B8

https://victorymuseum.ru/upload/iblock/5ef/0909099.png

  1. https://ru.wikipedia.org/wiki/%D0%A5%D1%80%D0%BE%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F_%D1%80%D0%B0%D0%B7%D0%B2%D0%B8%D1%82%D0%B8%D1%8F_%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9_%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B8
  2. https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BB%D0%B0%D0%BC%D0%BF%D0%BE%D0%B2%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BE%D0%B2
  3. https://ru.wikipedia.org/wiki/%D0%90%D1%80%D1%85%D0%B8%D1%82%D0%B5%D0%BA%D1%82%D1%83%D1%80%D0%B0_%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%B0

СПИСОК ДЛЯ ТРЕНИРОВКИ ССЫЛОК

  • Шрифт в рекламе. Фирменный стиль и рекламное объявление.
  • Технология Workflow
  • Фотодокументирование. Появление, развитие, применение
  • коммерческая тайна и коммерческий шпионаж
  • история создания логотипа Versace
  • Использование переплетных материалов в книжной многополосной продукции
  • История книгопечатания
  • Теория управления производством Форда
  • Херсонес Таврический
  • Организация и планирование рекламных кампаний
  • Мультимедиа технологии
  • Гражданское общество: понятие, особенности, структура

Содержание

Введение
1. Четыре поколения ЭВМ
2. Перспективы развития вычислительной техники
Заключение
Список использованных источников

Введение

Первая страница в истории создания вычислительных машин связана с именем французского философа, писателя, математика и физика Блеза Паскаля. В 1641г. он сконструировал механический вычислитель, который позволял складывать и вычитать числа. В 1673 г. выдающийся немецкий ученый Готфрид Лейбниц построил первую счетную машину, способную механически выполнять все четыре действия арифметики. Ряд важнейших ее механизмов применяли вплоть до середины XX в. в некоторых типах машин. К типу машины Лейбница могут быть отнесены все машины, в частности и первые ЭВМ, производившие умножение как многократное сложение, а деление — как многократное вычитание. Главным достоинством всех этих машин являлись более высокие, чем у человека, скорость и точность вычислений. Их создание продемонстрировало принципиальную возможность механизации интеллектуальной деятельности человека.

Появление ЭВМ или компьютеров – одна из существенных примет современной научно-технической революции. Широкое распространение компьютеров привело к тому, что все большее число людей стало знакомиться с основами вычислительной техники, а программирование постепенно превратилось в элемент культуры. Первые электронные компьютеры появились в первой половине XX века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были электронные машины, способные решать сложные задачи.

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов. С каждым новым поколением увеличивалось быстродействие, уменьшались потребляемая мощность и масса ЭВМ, повышалась их надежность. При этом возрастали их «интеллектуальные» возможности — способность «понимать» человека и обеспечивать ему эффективные средства для обращения к ЭВМ.

1. Четыре поколения ЭВМ

Можно выделить 4 основные поколения ЭВМ. Но деление компьютерной техники на поколения — весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:

I поколение ЭВМ (до 1955 г.)

Все ЭВМ I-го поколения были сделаны на основе электронных ламп, что делало их ненадежными — лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

Нужна помощь в написании реферата?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

Притом для каждой машины использовался свой язык программирования. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства, оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электроннолучевых трубок.

Эти неудобства начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы — 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 — 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации «современного» компьютера того времени требовались специальные системы охлаждения. Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.

Основные компьютеры первого поколения:

  • В 1946 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж.У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину — “Эниак” (Electronic Numerical Integrator and Computer), которая предназначалась для решения задач баллистики. Она работала в тысячу раз быстрее, чем «Марк-1», выполняя за одну секунду 300 умножений или 5000 сложений многоразрядных чисел. Размеры: 30 м. в длину, объём — 85 м3., вес — 30 тонн. Использовалось около 20000 электронных ламп и1500 реле. Мощность ее была до 150 кВт.
  • Первая машина с хранимой программой — ”Эдсак” — была создана в Кембриджском университете (Англия) в 1949 г. Она имела запоминающее устройство на 512 ртутных линиях задержки. Время выполнения сложения было 0,07 мс, умножения — 8,5 мс.
  • В 1948г. году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ — Малой электронной счетно-решающей машины (МЭСМ). В 1951г. МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20 разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах.
  • В 1951 г. была создана машина “Юнивак”(UNIVAC) — первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации.

Итоги поколения:

Элементная база первых вычислительных машин – электронные лампы – определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным.

Объем оперативной памяти, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте. Очень трудоемким и малоэффективным был процесс общения человека с машиной первого поколения. Как правило, сам разработчик, написавший программу в машинных кодах, вводил ее в память ЭВМ с помощью перфокарт и затем вручную управлял ее выполнением. Электронный монстр на определенное время отдавался в безраздельное пользование программисту, и от уровня его мастерства, способности быстро находить и исправлять ошибки и умения ориентироваться за пультом ЭВМ во многом зависела эффективность решения вычислительной задачи.

Ориентация на ручное управление определяла отсутствие каких бы то ни было возможностей буферизации программ.

Нужна помощь в написании реферата?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

II поколение (1958-1964 гг.)

В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли, они были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. 1 транзистор способен был заменить ~ 40 электронных ламп и работает с большей скоростью.

Во II-ом поколении компьютеров дискретные транзисторные логические элементы вытеснили электронные лампы. В качестве носителей информации использовались магнитные ленты и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски. В качестве программного обеспечения стали использовать языки программирования высокого уровня, были написаны специальные трансляторы с этих языков на язык машинных команд. Для ускорения вычислений в этих машинах было реализовано некоторое перекрытие команд: последующая команда начинала выполняться до окончания предыдущей.

Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы, управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.

Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

Эти ЭВМ по сравнению с ЭВМ первого поколения обладали большими возможностями и быстродействием.

Если говорить в общих чертах о структурных изменениях машин второго поколения, то это, прежде всего, появление возможности совмещения операций ввода/вывода с вычислениями в центральном процессоре, увеличение объема оперативной и внешней памяти, использование алфавитно-цифровых устройств для ввода и вывода данных. «Открытый» режим использования машин первого поколения сменился «закрытым», при котором программист уже не допускался в машинный зал, а сдавал свою программу на алгоритмическом языке оператору ЭВМ, который и занимался ее дальнейшим пропуском на машине. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду!

III поколение (1964-1972 гг.)

В 1960 г. появились первые интегральные схемы (ИС), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями. ИС — это кремниевый кристалл, площадь которого примерно 10 мм2. 1 ИС способна заменить десятки тысяч транзисторов. 1 кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. А компьютер с использованием ИС достигает производительности в 10 млн. операций в секунду.

В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.

Нужна помощь в написании реферата?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать реферат

Машины третьего поколения — это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения — семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

Наиболее быстродействующая ЭВМ ряда ЕС ЭВМ выпускалась заводом ВЭМ (г. Пенза). Она выполняла до 5 млн. опер/с.

В целях защиты от внешних воздействий интегральные схемы выпускают в защитных корпусах. По количеству элементов различают интегральные схемы: 1-й степени интеграции (до 10 элементов), 2-й степени интеграции (от 10 до 100) и т. д. Размеры отдельных элементов интегральных схем очень малы (порядка 0,5-10 мкм) и подчас соизмеримы с размерами пылинок (1-100 мкм). Поэтому производство интегральных схем осуществляется в особо чистых условиях. Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Выпускавшаяся с 1964 года серия S/360 положила начало третьему поколению ЭВМ. Эти машины представляли собой не отдельно взятые системы, а семейство программно-совместимых компьютеров, различающихся по производительности, но общих по архитектуре. Собственно, именно в эти годы и возникло понятие компьютерной архитектуры, которое символизировало весь комплекс аппаратных и программных средств ЭВМ. У машин одного семейства могут быть разные технические параметры и функциональные возможности устройств, но всегда общие системы команд, организация взаимосвязей между модулями и матобеспечением.

IV поколение (с 1972 г. по настоящее время)

Четвёртое поколение — это теперешнее поколение компьютерной техники, разработанное после 1970 года.

Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров. В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см2.). БИСы применялись уже в таких компьютерах, как “Иллиак”, ”Эльбрус”, ”Макинтош”. Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.

Нужна помощь в написании реферата?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена реферата

C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств.

Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) — ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые персональные компьютеры- IBM PC.

Конструктивно-технологической основой ЭВМ четвертого поколения являются большие (БИС) и сверхбольшие (СБИС) ИМС.

К четвертому поколению относятся реализованные на СБИС такие новые средства вычислительной техники, как микропроцессоры и создаваемые на их основе микро-ЭВМ. Микропроцессоры и микро-ЭВМ нашли широкое применение в устройствах и системах автоматизации измерений, обработки данных и управления технологическими процессами, при построении различных специализированных цифровых устройств и машин.

Вычислительные возможности микро-ЭВМ оказались достаточными для создания на их основе в рамках ЭВМ четвертого поколения, нового по ряду эксплуатационных характеристик и способу использования типа вычислительных устройств — персональных ЭВМ, получивших в настоящее время широкое распространение.

В ЭВМ четвертого поколения достигается дальнейшее упрощение контактов человека с ЭВМ путем повышения уровня машинного языка, значительного расширения функций устройств (терминалов), используемых человеком для связи с ЭВМ, начинается практическая реализация голосовой связи с ЭВМ. Использование БИС позволяет аппаратурными средствами реализовывать некоторые функции программ операционных систем (аппаратурная реализация трансляторов с алгоритмических языков высокого уровня и др.), что способствует увеличению производительности машин.

Характерным для крупных ЭВМ четвертого поколения является наличие нескольких процессоров, ориентированных на выполнение определенных операций, процедур или на решение некоторых классов задач. В рамках этого поколения создаются многопроцессорные вычислительные системы с быстродействием, в несколько десятков и даже сотен миллионов операций в секунду. К этому же поколению относятся и многопроцессорные управляющие комплексы повышенной надежности с автоматическим изменением структуры (автоматической реконфигурацией).

Какими должны быть ЭВМ V поколения.

Нужна помощь в написании реферата?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена реферата

В 90-е годы прошлого века определились контуры нового, пятого поколения ЭВМ. В значительной степени этому способствовали публикации сведений о проекте ЭВМ пятого поколения, разрабатываемом ведущими японскими фирмами и научными организациями, поставившими перед собой цель захвата в 90-х годах японской промышленностью мирового лидерства в области вычислительной техники. Поэтому этот проект часто называют “японским вызовом”. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения, помимо более высокой производительности и надежности при более низкой стоимости должны, обладать качественно новыми свойствами. В первую очередь к ним относятся возможность взаимодействия с ЭВМ при помощи языка, человеческой речи и графических изображений, способность системы обучаться, производить ассоциативную обработку информации, делать логические суждения, вести “разумную” беседу с человеком в форме вопросов и ответов. Вычислительные системы пятого поколения должны также “понимать” содержимое базы данных, которая при этом превращается в “базу знаний”, и использовать эти “знания” при решении задач.

2. Перспективы развития вычислительной техники

В 1959 году фирма INTEL (США) по заказу фирмы Datapoint (США) начала создавать микропроцессоры (МП). Первым микропроцессором на мировом рынке стал МП Intel 8008.

Новое поколение МП идёт на смену предыдущему каждые два года и морально устаревает за 3-4 года. МП вместе с другими устройствами микроэлектроники позволяют создать довольно экономичные информационные системы.

Причина такой популярности МП состоит в том, что с их появлением отпала необходимость в специальных схемах обработки информации, достаточно запрограммировать её функцию и ввести в ПЗУ МП.

Каковы же перспективы совершенствования персональных компьютеров, и что нас ожидает в дальнейшем в этой сфере?

Сотрудникам Белловских лабораторий удалось создать транзистор размером в 60 атомов! Они считают, что транзисторы ко дню своего шестидесятилетия по ряду параметров достигнут физических пределов. Так, размер транзистора должен стать чуть меньше 0,01 мкм (уже достигнут размер 0,05 мкм). Это означает, что на чипе площадью 10 кв. см можно будет разместить 20 000 000 транзисторов.

Описывая бурно развивающуюся в настоящее время технологию производства пластиковых транзисторов, они приходят к достаточно логичному выводу, что сумма всех усовершенствований приведет к созданию «финального компьютера», более мощного, чем современные рабочие станции. Компьютер этот будет иметь размер почтовой марки и, соответственно, цену, не превышающую цены почтовой марки.

Представим себе, наконец, гибкий экран телевизора или компьютерного монитора, который не разобьется, если швырнуть его на землю. А что можно сказать о пластинке величиной с обычную кредитную карточку, заполненной массой нужнейшей информации, включая ту, которая обычно и хранится в кредитной карточке, но выполненной из такого материала, что она никогда не потребует замены?

Нужна помощь в написании реферата?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать реферат

В последнее время высказывались и мысли о том, что давно пора расстаться с электронами как основными действующими лицами на сценах микроэлектроники и обратиться к фотоном. Использование фотонов якобы позволит изготовить процессор компьютера размером с атом.

Заключение

Сегодня, с таким колоссальным развитием ИТ-технологий и массовой компьютеризацией нашей планеты, когда компьютеры становятся нашим незаменимым помощником, все больше внедряясь в повседневную жизнь человека, принципы архитектуры компьютера остаются неизменными еще с того момента, как знаменитый математик Джон фон Нейман в 1945 году подготовил доклад об устройстве и функционировании универсальных вычислительных устройств, то есть компьютеров.

Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография).

Ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие «интеллектуализации» компьютеров — устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволит общаться с ЭВМ всем пользователям, даже тем, кто не обладает специальных знаний в этой области. ЭВМ будет помощником человеку во всех областях.

Список использованных источников

1. Алтухов Е.В., Рыбалко Л.А., Савченко В.С. Основы информатики и вычислительной техники, М., «Высшая школа», 1992.
2. Симонович С.В., Евсеев Г.А., Алексеев А.Г. Общая информатика, М., 1999.
3. Шафрин Ю. Информационные технологии, М., 1998.
4. В.Э.Фигурнов, «IBM PC для пользователя», М., «Инфра-М»1995г.
5. Казиев В.М. Математика и информатика (в 3-х частях). – Нальчик, «Полиграфсервис и Т», 2001.

Обновлено: 04.05.2023

Цель работы: изучить историю развития компьютерной техники. Задачи: 1. Изучить и систематизировать имеющийся материал по теме. 2. Оформить и представить работу (развивать практические умения использования офисных программ в учебной деятельности, а именно использование программ для работы с текстом, для подготовки презентаций выполненных работ. Параллельно решается задача обучения проектной деятельности с использованием офисных программ).

МОУ – СОШ с. Журавлевка

учитель Ворожейкина Т.Е.

Начало эпохи ЭВМ .. 5

Первое поколение ЭВМ .. 6

Второе поколение ЭВМ. 7

Третье поколение ЭВМ. 8

Четвертое поколение ЭВМ …………………………………………………… 9-10

Пятое поколение ЭВМ ………………. 11-12

Список литературы. 14

Актуальность темы: Человек XXI века активно стремиться использовать все научные разработки цивилизации – компьютер и Интернет. В наше время трудно представить себе, что без компьютеров можно обойтись. Сегодня компьютерами пользуются все и везде. Компьютер не просто изобретение – это результат длительной технической эволюции, продукт творческой деятельности множества людей.

Цель работы: изучить историю развития компьютерной техники.

1. Изучить и систематизировать имеющийся материал по теме.

2. Оформить и представить работу ( развивать практические умения использования офисных программ в учебной деятельности, а именно использование программ для работы с текстом, для подготовки презентаций выполненных работ. Параллельно решается задача обучения проектной деятельности с использованием офисных программ).

Методы исследования:

– теоретический ( изучение литературы, обобщение );

– практический ( оформление и представление работы с использованием офисных программ)

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития.

Первая ЭВМ [1] ENIAC была создана в конце 1945 г. в США.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC . Годом позже появилась американская ЭВМ EDVAC .

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев.

http://kolomna-school7-ict.narod.ru/DATA/p15112.jpg

Сергей Алексеевич Лебедев (1902 – 1974).

Родился в Нижнем Новгороде. В 1921 году он экстерном сдал экзамены за среднюю школу и поступил в МВТУ на электротехнический факультет. Велика его роль в разработке математического обеспечения для всех отечественных ЭВМ.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстро действием, оперативной памятью, способом ввода

ЭВМ первого поколения появились в 1946 году. Они были сделаны на основе электронных ламп, что делало их ненадежными – лампы приходилось часто менять.

Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.


http://kolomna-school7-ict.narod.ru/DATA/p15114.jpg

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM -360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

http://kolomna-school7-ict.narod.ru/DATA/p15116.jpg

Миникомпьютер на интегральных схемах

I поколение ЭВМ. Первое поколение (1945-1954) — компьютеры на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой.

Основоположниками компьютерной науки по праву считаются Клод Шеннон — создатель теории информации.

Алан Тьюринг — математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман — автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, — кибернетика, наука об управлении как одном из основных информационных процессов.

Основателем кибернетики — является американский математик Норберт Винер.

II поколение ЭВМ

Во втором поколении компьютеров (1955-1964) — вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны — далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня — Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.

Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.

III поколение ЭВМ

Наконец, в третьем поколении ЭВМ (1965-1974) — впервые стали использоваться интегральные схемы — целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (то, что сейчас называют микросхемами). В это же время появляется полупроводниковая память, которая и по всей день используется в персональных компьютерах в качестве оперативной.

В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ — серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ.

Еще в начале 60-х появляются первые миникомпьютеры — небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям.

Миникомпьютеры — представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.

Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера — что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию — ведь микропроцессор является сердцем и душой нашего с вами персонального компьютера.

IV поколение ЭВМ

К сожалению, дальше стройная картина смены поколений нарушается.

Нужна помощь в написании доклада?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Так или иначе, очевидно, что начиная с середины 70-х все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, — прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

Большие компьютеры и суперкомпьютеры, конечно же, отнюдь не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

V поколение ЭВМ

Переход к компьютерам пятого поколения предполагал переход к новым архитектурам, ориентированным на создание искусственного интеллекта.

Основные требования к компьютерам 5-го поколения:

  1. Создание развитого человеко-машинного интерфейса (распознавание речи, образов).
  2. Развитие логического программирования для создания баз знаний и систем искусственного интеллекта.
  3. Создание новых технологий в производстве вычислительной техники.
  4. Создание новых архитектур компьютеров и вычислительных комплексов.

Новые технические возможности вычислительной техники должны были расширить круг решаемых задач и позволить перейти к задачам создания искусственного интеллекта. В качестве одной из необходимых для создания искусственного интеллекта составляющих являются базы знаний (базы данных) по различным направлениям науки и техники. Для создания и использования баз данных требуется высокое быстродействие вычислительной системы и большой объем памяти.

Универсальные компьютеры способны производить высокоскоростные вычисления, но не пригодны для выполнения с высокой скоростью операций сравнения и сортировки больших объемов записей, хранящихся обычно на магнитных дисках.

Для создания программ, обеспечивающих заполнение, обновление баз данных и работу с ними, были созданы специальные объектно ориентированные и логические языки программирования, обеспечивающие наибольшие возможности по сравнению с обычными процедурными языками.

Нужна помощь в написании доклада?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Структура этих языков требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Суперкомпьютеры

Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами — векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. Если на обычном процессоре программист выполняет операции над каждым компонентом вектора по очереди, то на векторном — выдаёт сразу векторые команды.

Компьютеры фирмы Cray Research стали классикой в области векторно-конвейерных суперкомпьютеров. Существует легенда, что первый суперкомпьютер Cray был собран в гараже, однако этот гараж был размером 20 х 20 метров, а платы для нового компьютера заказывались на лучших заводах США.

Компьютер Cray-1, работа над которым была закончена в 1976 году относится к классу первых сверхвысокопроизводительных векторных компьютеров. К этому классу относятся также машины Иллиак-IV, STAR-100, ASC. Производительность Cray-1 составляла 166 Мфлоп/сек. Компьютер был собран на интегральных схемах. Выполнял 128 инструкций.

В состав структуры компьютера Cray-1 входили:

1. Основная память, объемом до 1048576 слов, разделенная на 16 независимых блоков, емкостью 64К слов каждый

2. Регистровая память, состоящая из пяти групп быстрых регистров, предназначенных для хранения и преобразования адресов, для хранения и обработки векторных величин.

3. Функциональные модули, в состав которых входят 12 параллельно работающих устройств, служащих для выполнения арифметических и логических операций над адресами, скалярными и векторными величинами.

Двенадцать функциональных устройств машины Cray-1, играющие роль арифметико-логических преобразователей, не имеют непосредственной связи с основной памятью. Так же как и в машинах семейства CDC-6000, они имеют доступ только к быстрым операционным регистрам, из которых выбираются операнды и в которые записываются результаты выполнения операций.

Нужна помощь в написании доклада?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

4. Устройство, выполняющее функции управления параллельной работой модулей, блоков и устройств центрального процессора.

5. 24 канала ввода-вывода, организованные в 6 групп с максимальной пропускной способностью 500000 слов в секунду (2 млн. байт в сек.).

6. Три группы операционных регистров, непосредственно связанных с арифметико-логическими устройствами, называются основными. К ним относятся восемь А-регистров, состоящих из 24 разрядов каждый. А-регистры связаны с двумя функциональными модулями, выполняющими сложение (вычитание) и умножение целых чисел.

Эти операции используются главным образом для преобразования адресов, их базирования и индексирования. Они также используются для организации счетчиков циклов. В ряде случаев А-регистры используются для выполнения арифметических операций над целыми числами.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

История развития вычислительной техники

Основная часть. Теоретический обзор литературы. 4

Глава 1. Предпосылки развития вычислительной техники. 4

1.1. Ручной период докомпьютерной эпохи. 4

1.2 Механический этап . 5

1.3. Электромеханический этап. 6

Глава 2. Поколения ЭВМ. 7

2.1 . Первое поколение ЭВМ (1946 – 1958 гг.). 7

2.2. Второе поколение ЭВМ (1959 – 1967 гг.). 8

2.3. Третье поколение ЭВМ (1968 – 1973 гг.). 9

2.4. Четвертое поколение ЭВМ (1974 – 1982 гг.). 10

2.5. Пятое поколение ЭВМ (1983 – . гг.) . 11

Глава 3. Обзор литературы о поколениях ЭВМ. 12
Заключение. Выводы . 13

Список литературы . 14

Приложение 1. Ручной период. 15

Приложение 2. ЭВМ механического этапа. 17

Приложение 3. Первое поколение ЭВМ. 18

Приложение 4. Второе поколение ЭВМ. 19

Приложение 5. Третье поколение ЭВМ. 20

Приложение 6. Четвертое поколение ЭВМ. 21

Приложение 7. Пятое поколение ЭВМ. 22

Потребность в поиске решений все более и более сложных задач и, как следствие, все более сложных и длительных вычислений, поставила человека перед необходимостью находить способы, изобретать приспособления, которые смогли бы ему в этом помочь. Исторически сложилось так, что в разных странах возникли собственные денежные единицы, меры веса, длины, объемов, расстояния и т.п. Для перехода из одной системы измерений в другую требовались вычисления, которые чаще всего могли производить лишь специально обученные люди, постигшие логику математических действий. Их нередко приглашали даже из других стран. И совершенно естественно возникла потребность в изобретении устройств, помогающих счету. Так постепенно стали появляться механические помощники. До наших дней дошли свидетельства о многих таких изобретениях, навсегда вошедших в историю техники.

Компьютер прочно вошел в нашу жизнь, став главным помощником человека. На сегодняшний день в мире существует множество компьютеров различных фирм, различных групп сложности, назначения и поколений. В данном реферате мы рассмотрим историю развития вычислительной техники.

Таким образом, цель нашей работы: рассмотреть историю развития вычислительной техники от древности до наших дней.

Исходя из этого, мы ставим перед собой следующие задачи:

1. Проанализировать литературу и информационные ресурсы по истории вычислительных средств и электронно-вычислительных машин.

2. Составить хронологию событий

На протяжении всего своего существования люди использовали разного рода и конструкции вычислительные аппараты. Некоторые из них и по сей день используются в повседневной жизни, а некоторые затерялись в переулках времени.

Основная часть. Теоретический обзор литературы

В этой части мы рассмотрим основные этапы развития вычислительной техники, проведем теоретический обзор литературы и информационных ресурсов.

Глава 1. Предпосылки развития вычислительной техники

В этой главе мы рассмотрим ручной период докомпьютерной эпохи, механический этап и электромеханический этап развития вычислительной техники.

1.1. Ручной период докомпьютерной эпохи

Ручной период начался на заре человеческой цивилизации. Фиксация результатов счета у разных народов на разных континентах производилась разными способами: пальцевый счет, нанесение засечек, счетные палочки, узелки и т.д. (Приложение1, рис. 1, рис.2)

1.2. Механический этап

1623 г. – немецкий ученый В. Шиккард описывает и реализует в единственном экземпляре механическую счетную машину, предназначенную для выполнения четырех арифметических операций над шестиразрядными числами.

1642 г. – Б.Паскаль построил восьмиразрядную действующую модель счетной суммирующей машины. Впоследствии была создана серия из 50 таких машин, одна из которых являлась десятиразрядной. Так формировалось мнение о возможности автоматизации умственного труда.

1673 г. – немецкий математик Лейбниц создает первый арифмометр, позволяющий выполнять все четыре арифметических операции.

1881 г. – организация серийного производства арифмометров. [3]
Арифмометры использовались для практических вычислений вплоть до шестидесятых годов XX века.

В этот период английский математик Чарльз Бэббидж выдвинул идею создания программно – управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати. Первая спроектированная Беббиджем машина, Разностная машина, работала на паровом двигателе. Второй проект Бэббиджа — аналитическая машина , использующая принцип программного управления и предназначавшаяся для вычисления любого алгоритма. Проект не был реализован, но получил широкую известность и высокую оценку ученых.

Работающая модель была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы. Главным достижением этой эпохи можно считать изобретение арифмометра ученым, по имени Однер. Главная особенность изобретения Однера заключается в применении зубчатых колес с переменным числом зубцов вместо ступенчатых валиков. Оно проще валика конструктивно и имеет меньшие размеры. Первоначально появление в этот период ЭВМ не очень повлияло на выпуск арифмометров, прежде всего из-за различия в назначении, а также в стоимости и распространенности. [9] (Приложение 2, рис. 6, рис. 7, рис. 8, рис. 9, рис. 10, рис.11)

1.3. Электромеханический этап

Электромеханический этап развития вычислительной техники явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945).

Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов, так и развитие прикладной электротехники. Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях. Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых, он стал основоположником нового направления в вычислительной техники – счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машиносчетных станций, послуживших прообразом современных вычислительных центров. [ 7]

Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии. Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электропроводом. Эти аппараты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.

Глава 2. Поколения ЭВМ

А теперь мы бы хотели рассказать о современных ЭВМ, об их истории и развитии.
Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений – за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это, прежде всего, их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим – к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.

2.1. Первое поколение ЭВМ (1946 — 1958 гг.)

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. В 1946 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж.
У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину – “Эниак” (Electronic Numerical Integrator and Computer. Она выполняла за одну секунду 300 умножений или 5000 сложений многоразрядных чисел. Размеры: 30 м в длину, объём – 85 м 3 , вес – 30 тонн. Использовалось около 20000 электронных ламп и 1500 реле. Мощность ее была до 150 кВт.

Первая машина с хранимой программой – ”Эдсак” – была создана в Кембриджском университете (Англия) в 1949 г. Время выполнения сложения было 0,07 мс, умножения – 8,5 мс. В 1948г. году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ – Малой электронной счетно-решающей машины (МЭМС). В 1951г. МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20 ­разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах. В 1951 г. была создана машина “Юнивак”(UNIVAC) – первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации. Вводится в эксплуатацию БЭСМ-2 (большая электронная счетная машина) в 1952-1953 гг. с быстродействием около 10 тыс. операций в секунду. Машины, созданные во время этого поколения, предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, “Сетунь”, “Раздан”. Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2–3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой. [6] (Приложение 3, рис. 12, рис. 13, рис. 14, рис. 15, рис.16)

2.2. Второе поколение ЭВМ (1959 — 1967 гг.)

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом, за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:

ЭВМ М-40, -50 для систем противоракетной обороны;

Урал -11, -14, -16 – ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;

Минск -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;

Минск-22 предназначена для решения научно-технических и планово-экономических задач;

БЭСМ-3 -4, -6 машин общего назначения, ориентированных на решение сложных задач науки и техники;

М-20, -220, -222 машина общего назначения, ориентированная на решение сложных математических задач;

МИР-1 малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач,

“Наири” – машина общего назначения, предназначенная для решения широкого круга инженерных, научно-технических, а также некоторых типов планово-экономических и учетно-статистических задач;

Рута-110 – мини ЭВМ общего назначения и ряд других ЭВМ.

ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20—30 тысяч операций в секунду и оперативную память—соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6, обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый). [7]
Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода..
Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались. (Приложение 4, рис. 16, рис. 17, рис. 18, рис. 19)

2.3. Третье поколение ЭВМ (1968 — 1973 гг.)

Элементная база ЭВМ – малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились. В СССР в 70-е годы получают дальнейшее развитие. Разрабатываются универсальные ЭВМ третьего поколения ЕС, совместимые как между собой (машины средней и высокой производительности ЕС ЭВМ), так и с зарубежными ЭВМ третьего поколения (IBM-360 и др. – США). В разработке машин ЕС ЭВМ принимают участие специалисты СССР. В то же время в СССР создаются многопроцессорные ЭВМ, выпускаются мини-ЭВМ “Мир-31”, “Мир-32”, “Наири-34”. [2] Для управления технологическими процессами создаются ЭВМ серии АСВТ М-6000 и М-7000 (разработчики В.П.Рязанов и др.). Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, “Электроника -79, -100, -125, -200”, “Электроника ДЗ-28”, “Электроника НЦ-60” и др. К машинам третьего поколения относились “Днепр-2”, ЭВМ Единой Системы (ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1050, ЕС-1060 и несколько их промежуточных модификаций – ЕС-1021 и др.), МИР-2, “Наири-2” и ряд других. [4]

Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем. (Приложение 5, рис. 21, рис. 22)

2.4. Четвертое поколение ЭВМ (1974 — 1982 гг.)

Элементная база ЭВМ – большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора) – набора программ, которые организуют непрерывную работу машины без вмешательства человека. К этому поколению можно отнести ЭВМ ЕС: ЕС-1015, -1025, -1035, -1045, -1055, -1065 (“Ряд 2”), -1036, -1046, -1066, СМ-1420, -1600, -1700, все персональные ЭВМ (“Электроника МС 0501”, “Электроника-85”, “Искра-226”, ЕС-1840, -1841, -1842 и др.), а также другие типы и модификации. [5] Первый компьютер появился в 1976 г. К ЭВМ четвертого поколения относится также многопроцессорный вычислительный комплекс “Эльбрус”. “Эльбрус-1КБ” имел быстродействие до 5,5 млн. операций, а объем оперативной памяти до 64 Мб. У “Эльбрус-2” производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мслов (слово 72 разряда), максимальная пропускная способность каналов ввода-вывода – 120 Мб/с. (Приложение 6, рис. 23, рис. 24)

Цель работы – рассмотреть четыре поколения развития ЭВМ.
Исходя из поставленной цели, нами были сформулированы следующие задачи исследования:
проанализировать все основные этапы развития ЭВМ
выявить характерные черты, свойственные ЭВМ в каждом поколении.

Содержание работы

ВВЕДЕНИЕ 3
1. Четыре поколения ЭВМ 4
2. Первое поколение ЭВМ 5
3. Второе поколение ЭВМ 7
4. Третье поколение ЭВМ 9
5. Четвертое поколение ЭВМ 11
ЗАКЛЮЧЕНИЕ 13
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 14

Файлы: 1 файл

этапы развития эвм.doc

ВВЕДЕНИЕ

Цель работы – рассмотреть четыре поколения развития ЭВМ.

Исходя из поставленной цели, нами были сформулированы следующие задачи исследования:

  1. проанализировать все основные этапы развития ЭВМ
  2. выявить характерные черты, свойственные ЭВМ в каждом поколении.

По структуре реферат состоит из введения, четырех разделов основной части, заключения и списка использованной литературы.

1. Четыре поколения ЭВМ

Вся история компьютера тесно переплетена с желанием человека облегчить и автоматизировать большие объемы вычислений. Любые, даже не сложные арифметические операции с использованием больших чисел достаточно затруднительны для человеческого мозга. Поэтому уже в древности человечество предпринимало попытки создать устройство, которое могло бы эти вычисления выполнять. Прошло немногим более 50 лет, как на свет появилась первая электронная вычислительная машина.

История развития средств электронной вычислительной техники уходит вглубь веков. По скорости развития этому процессу нет аналога, так как темпы, с которыми разрасталось количество электронных вычислительных машин (ЭВМ), просто колоссальны. С процессом появления компьютеров связано много великих имен, что вызывает неподдельный интерес к этой области. На сегодняшний день во многих странах мира созданы музеи, где хранятся образцы первых электронных вычислительных машин, выпускается много литературы, в которой отражены самые важные достижения в этой области, проводятся конференции.

За короткий промежуток времени сменилось несколько поколений электронно- вычислительных машин. Выделяют четыре поколения. Из истории развития компьютерной техники видно, что основной чертой является быстрота смены поколений. Уже успело смениться четыре, и мы сейчас работаем на компьютерах пятого поколения. Первым определяющим признаком, при котором мы относим ЭВМ к тому или иному поколению является, прежде всего, элементная база (из каких элементов они построены). Также для определения используются такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Несмотря на условность такого деления, поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.

2. Первое поколение ЭВМ

К первому поколению ЭВМ принято относить период с 1945 по 1954 годы. Машины этого поколения – это ЭВМ на электронных лампах (наподобие тех ламп, которые стояли в старых телевизорах). Это было доисторическое время. Эту эпоху можно считать временем становления ЭВМ. Тогда такие машины строились как экспериментальные устройства для проверки какой-либо теоретической базы. Первые ЭВМ впечатляли своими габаритами, вес и размер которых требовал для себя отдельных зданий.

Ввод чисел в первые ЭВМ вводился с помощью перфокарт, а программное управление последовательностью выполнения арифметических операция выполнялся с помощью штекеров и наборных полей. Такой способ программирования требовал много времени для подготовки машины. ЭВМ первого поколения отличались невысокой надежностью, требовали системы охлаждения. Также требовалось очень много человеческих ресурсов. Известны факты, что для поддержания работы таких огромных машин к ним приписывали солдат. Они постоянно должны были следить за работой такой машины, менять электронные лампы. Если хотя бы одна лампа перегорала, то работа машины останавливалась. После нахождения и замены лампы работа продолжалась. Работа на таких машинах была очень затратной. Процесс программирования требовал от людей хорошего знания архитектуры ЭВМ и ее программных возможностей. Так как процесс программирования на таких машинах больше напоминал искусство, работать с ними мог только узкий круг людей: математики, физики и электроники.

Разработчиками Джоном Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert) была создана первая серийно выпускающаяся ЭВМ первого поколения UNIVAC (Универсальный автоматический компьютер). Это был самый первый цифровой компьютер общего назначения 1 .

Работа по созданию UNIVAC велась с 1946 года. Завершение произошло в 1951 году. UNIVAC имел время сложения 120 мкс, умножения -1800 мкс и деления – 3600 мкс. Этот компьютер мог сохранять 1000 слов, 12000 цифр со временем доступа до 400 мкс максимально. Магнитная лента несла 120000 слов и 1440000 цифр. Ввод/вывод осуществлялся с магнитной ленты, перфокарт и перфоратора. Первый экземпляр UNIVAC использовался для переписи населения в США.

Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм.

Помимо UNIVAC серийно выпускавшимися ЭВМ были: Ferranti Mark 1,LEO1.

3. Второе поколение ЭВМ

Второе поколение ЭВМ является продолжением развития компьютеров первого поколения. В этот период происходит много качественных изменений, благодаря которым можно сделать вывод, что развитие компьютерной техники перешло на новый этап. Это время характеризуется рядом прогрессивных архитектурных решений и дальнейшим развитием технологии программирования.

В качестве элементной базы использовались уже не электронные лампы, а полупроводниковые диоды и транзисторы. Работа транзисторов была более стабильной, чего нельзя сказать про лампы. Транзисторы выделяли меньше тепла и потребляли меньше энергии. Каждый транзистор представлял собой отдельную деталь, которую нужно впаять в печатную плату. Этот процесс занимал очень много времени и сил. Магнитные сердечники и магнитные барабаны стали использовать в качестве устройств памяти. Магнитные барабаны являются далекими предками современных жестких дисков. Технология памяти на магнитных сердечниках состояла из маленьких магнитных колец, которые поляризовались в двух направлениях, представляя таким образом бит данных. Такая память была очень дорогой, потому что требовала ручной сборки. Компьютеры второго поколения имели до 32 Кбайт оперативной памяти, а скорость вычислений их была от 200000 до 300000 операций в секунду.

В развитии программного обеспечения также произошел ряд изменений. Были созданы развитые микроассемблеры, которые значительно повысили уровень общения с ЭВМ, но в своей основе это были языки низкого уровня. В конце 50-х годов появилась возможность программирования на алгоритмических языках. Были разработаны первые языки программирования высокого уровня – Фортран, Алгол, Кобол. Эти события позволили упростить и ускорить написание программ для компьютеров. Программирование стало приобретать черты ремесла, оставаясь наукой. Все это позволило уменьшить габариты ЭВМ. Стоимость таких машин, естественно, снизилась настолько, что их впервые могли строить для продажи.

Несмотря на многие достижения в развитии ЭВМ второго поколения, главным все-таки можно считать достижения в области программ. В этот период появилось то, что сегодня называют операционной системой. Расширилась сфера применения ЭВМ. Теперь уже не только ученые могли пользоваться такой техникой, но и простой народ. Некоторые крупные фирмы стали использовать ЭВМ в планировании и управлении

Третье поколение ЭВМ

Третье поколение ЭВМ связано, прежде всего, с разработкой интегральных схем – целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника. Первая интегральная схема была создана в январе 1959 года Д. Килби 2 . Она представляла собой тонкую германиевую пластинку длиной в 1см. В это же время появляется полупроводниковая память, которая до сегодняшнего дня используется в персональных компьютерах в качестве оперативной. Применение интегральных схем резко повысило возможности ЭВМ. Теперь центральный процессор мог параллельно работать и управлять периферийными устройствами. Это дало возможность ЭВМ одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации этого принципа появилась возможность работы в режиме разделения времени в диалоговом режиме. Пользователи, которые были удалены от ЭВМ, могли оперативно взаимодействовать с машиной независимо друг от друга.

Годы развития ЭВМ третьего поколения отличительны тем, что именно в это время производство компьютеров приобретает промышленный размах. В эти годы усиленно пытается заявить о себе фирма IBM. Она первой реализовала семейство ЭВМ – серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Для ЭВМ третьего поколения традиционным стала разработка серийных ЭВМ. Но, несмотря на то, что машины одной серии могли сильно отличаться по возможностям и производительности, они были информационно, программно и аппаратно совместимы.

Программное обеспечение для ЭВМ третьего поколения было сильно расширено (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.).

Слабым местом у этих машин было невысокое качество комплектующих. Чтобы как-то компенсировать это, сьали разрабатывать спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач.

Начало 60-х годов обозначилось появлением первых миникомпьютеров. Это были небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Был сделан первый шаг к появлению персональных компьютеров. Пробные образцы были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.

Количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера. В 1971 г. Это смогла сделать фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов.

Период развития ЭВМ третьего поколения оказался судьбоносным периодом. В 1969 г. зародилась первая глобальная компьютерная сеть. Это сеть является прототипом того, что сейчас мы называем интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С (“Си”), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Четвертое поколение ЭВМ

Элементной базой ЭВМ четвертого поколения является использование большие (БИС) и сверхбольшие (СБИС) интегральные схемы, созданные в 70-80-х годах. При помощи БИС на одном кристалле можно создать устройства, содержащие тысячи и десятки тысяч транзисторов. Компактность узлов при использовании БИС позволяет строить ЭВМ с большим числом вычислительных устройств – процессоров (так называемые многопроцессорные вычислительные системы). При этом БИС – технология частично использовалась уже и в проектах предыдущего поколения (IBM/360, ЕС ЭВМ ряд-2 и др.). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. В 1971 году фирма Intel выпустила микропроцессор, появились микро-ЭВМ и персональные ЭВМ. На самом деле в этот период не было каких-то принципиально новых изменений. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, – прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

Машины четвертого поколения можно условно разделить на пять классов: микро-ЭВМ, персональные компьютеры (ПК), мини-ЭВМ, специальные ЭВМ, ЭВМ общего назначения, супер-ЭВМ.

Машины четвертого поколения можно охарактеризовать следующими показателями: элементной базой (СБИС), персональным характером использования (ПК), нетрадиционной архитектурой (супер-ЭВМ).

Читайте также:

      

  • Христофоров судьба реформы реферат
  •   

  • Реферат информатика в лицах
  •   

  • Табиғи сипаттағы төтенше жағдайлар реферат
  •   

  • Стадии процесса применения норм права реферат
  •   

  • Реферат на тему воинские ритуалы