Ядерные аварии в мире реферат

Обновлено: 04.05.2023

1 сентября 1944 года в США, штат Теннеси, в Ок-Риджской национальной лаборатории при попытке прочистить трубу в лабораторном устройстве по обогащению урана произошел взрыв гексафторида урана, что привело к образованию опасного вещества – гидрофтористой кислоты.

в СССР первая радиационная авария произошла 19 июня 1948 года, на следующий же день после выхода атомного реактора по наработке оружейного плутония (в Челябинской области) на проектную мощность. В ходе ликвидации аварии облучению подвергся весь мужской персонал реактора, а также солдаты строительных батальонов, привлеченные к ликвидации аварии.

12 декабря 1952 года в Канаде произошла первая в мире серьезная авария на атомной электростанции. Тысячи кюри продуктов деления попали во внешнюю среду, а около 3800 кубических метров радиоактивно загрязненной воды было сброшено прямо на землю, в мелкие траншеи неподалеку от реки Оттавы.

10 октября 1957 года в Великобритании в Виндскейле произошла крупная авария на одном из двух реакторов по наработке оружейного плутония. Вследствие ошибки, допущенной при эксплуатации, температура топлива в реакторе резко возросла, и в активной зоне возник пожар, продолжавшийся в течение 4 суток. Получили повреждения 150 технологических каналов, что повлекло за собой выброс радионуклидов. Всего сгорело около 11 тонн урана. Радиоактивные осадки загрязнили обширные области Англии и Ирландии; радиоактивное облако достигло Бельгии, Дании, Германии, Норвегии.

Самым серьезным инцидентом в атомной энергетике США стала авария на АЭС Тримайл-Айленд в штате Пенсильвания, произошедшая 28 марта 1979 года. В результате серии сбоев в работе оборудования и грубых ошибок операторов на втором энергоблоке АЭС произошло расплавление 53% активной зоны реактора. Произошел выброс в атмосферу инертных радиоактивных газов – ксенона и йода Кроме того, в реку Сукуахана было сброшено 185 кубических метров слаборадиоактивной воды.

В ночь с 25 на 26 апреля 1986 года на четвертом блоке Чернобыльской АЭС (Украина) произошла крупнейшая ядерная авария в мире, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. В результате аварии произошло радиоактивное заражение в радиусе 30 км. Загрязнена территория площадью 160 тысяч квадратных километров. Пострадали северная часть Украины, Беларусь и запад России. Радиационному загрязнению подверглись 19 российских регионов с территорией почти 60 тысяч квадратных километров и с населением 2,6 миллиона человек.

30 сентября 1999 года произошла крупнейшая авария в истории атомной энергетики Японии. На заводе по изготовлению топлива для АЭС в научном городке Токаймура (префектура Ибараки) из-за ошибки персонала началась неуправляемая цепная реакция, которая продолжалась в течение 17 часов. Облучению подверглись 439 человек, 119 из них получили дозу, превышающую ежегодно допустимый уровень.

Аварии на “Фукусиме-1” произошли после разрушительных землетрясения и цунами 11 марта 2011г. Из-за стихийного бедствия на трех реакторах вышла из строя система охлаждения, что привело к нескольким взрывам. Всего аварии произошли на четырех из шести реакторах электростанции.

За последние два века человечество пережило невероятный технологический бум. Мы открыли электричество, построили летающие аппараты, освоили околоземную орбиту и уже забираемся на задворки Солнечной системы. Открытие химического элемента под названием уран показало нам новые возможности в получении больших объемов энергии без необходимости расхода миллионов тонн органического топлива.

Мы уже не раз поплатились за свои неловкие шаги в покорении мирного атома. Последствия этих катастроф природа будет исправлять веками, потому что возможности человека весьма ограничены.

Авария на Чернобыльской АЭС. 26 апреля 1986 года

Одна из самых крупных техногенных катастроф современности, которая нанесла непоправимый вред нашей планете. Последствия аварии ощутили даже на другой стороне земного шара.

26 апреля 1986 года в результате ошибки персонала при эксплуатации реактора произошел взрыв в 4-м энергоблоке станции, который навсегда изменил историю человечества. Взрыв был такой мощности, что многотонные конструкции крыши были подброшены в воздух на несколько десятков метров.

Впрочем, был опасен не сам взрыв, а то, что он и возникший пожар вынесли из глубин реактора на поверхность. Огромное облако радиоактивных изотопов поднялось в небо, где было сразу же подхвачено воздушными потоками, которые понесли его в европейском направлении. Фонящие осадки начали накрывать города, в которых жили десятки тысяч людей. Больше всего от взрыва пострадали территории Беларуси и Украины.

Летучая смесь изотопов начала поражать ничего не подозревающих жителей. Практически весь йод-131, который был в реакторе, оказался в облаке в виду своей летучести. Несмотря на малый период полураспада (всего 8 дней), он успел распространиться на сотни километров. Люди вдыхали взвесь с радиоактивным изотопом, получая непоправимый вред для организма.

Вместе с йодом в воздух поднялись и другие, еще более опасные элементы, однако уйти в облаке смогли только летучий йод и цезий-137 (период полураспада 30 лет). Остальные, более тяжелые радиоактивные металлы, выпали в радиусе сотни километров от реактора.

Властям пришлось эвакуировать целый молодой город под названием Припять, в котором на то время проживало около 50 тысяч человек. Сейчас этот город стал символом катастрофы и объектом паломничества сталкеров со всего мира.

На ликвидацию последствий аварии были брошены тысячи людей и единиц техники. Некоторые из ликвидаторов погибли во время работ, или же скончались после от последствий радиоактивного облучения. Большинство стали инвалидами.

Несмотря на то, что почти все население близлежащих территорий было эвакуировано, в Зоне отчуждения до сих пор живут люди. Ученые не берутся давать точные прогнозы о том, когда последние свидетельства аварии на ЧАЭС исчезнут. По некоторым оценкам, это займет от нескольких сотен до нескольких тысяч лет.

Авария на станции Три-Майл-Айленд. 20 марта 1979 года

20 марта 1979 года на атомной электростанции Три-Майл-Айленд (Пенсильвания, США) произошла авария, которая могла стать еще одной мощной техногенной катастрофой, но ее вовремя удалось предотвратить. До аварии на ЧАЭС именно это происшествие считалось самым крупным в истории атомной энергетики.

Из-за утечки теплоносителя из системы циркуляции вокруг реактора было полностью прекращено охлаждение ядерного топлива. Система раскалилась до такой степени, что конструкция начала плавиться, металл и ядерное топливо превратились в лаву. Температура на дне достигала 1100 °. В контурах реактора начал скапливаться водород, который СМИ восприняли, как угрозу взрыва, что не совсем соответствовало действительности.

Из-за разрушения оболочек тепловыделяющих элементов, радиоактивные из ядерного топлива попали в воздух и начали циркулировать по вентиляционной системе станции, после чего попали в атмосферу. Впрочем, если сравнивать с Чернобыльской катастрофой, здесь все обошлось малыми жертвами. В воздух попали лишь благородные радиоактивные газы и небольшая часть йода-131.

Благодаря слаженным действиям персонала станции, угрозу взрыва реактора удалось предотвратить, возобновив охлаждение расплавленной машины. Эта авария могла стать аналогом взрыва на ЧАЭС, но в этом случае люди справились с катастрофой.

Власти США приняли решение не закрывать электростанцию. Первый энергоблок работает и сейчас.

Кыштымская авария. 29 сентября 1957 года

Осенью 1957 года здесь произошел взрыв на одном из хранилищ ядерных отходов. Причиной этого стал сбой системы охлаждения. Дело в том, что даже отработанное ядерное топливо продолжает вырабатывать тепло вследствие продолжающейся реакции распада элементов, поэтому хранилища оборудованы собственной охлаждающей системой, которая поддерживает стабильность запечатанных контейнеров с ядерной массой.

Один из контейнеров с высоким содержанием радиоактивных нитратно-ацетатных солей подвергся саморазогреву. Система датчиков не смогла это зафиксировать, потому что просто проржавела из-за халатности работников. В результате произошел взрыв емкости объемом больше 300 кубометров, который сорвал с хранилища крышу весом 160 тонн и отбросил ее почти на 30 метров. Сила взрыва была сопоставима со взрывом десятков тонн тротила.

Комиссия по ликвидации последствий чрезвычайных ситуаций приняла решение о выселении 23 деревень, суммарное население которых составляло почти 12 тысяч человек. Их имущество и скот были уничтожены и захоронены. Сама зона загрязнения получила название Восточно-Уральский радиоактивный след.
С 1968 года на этой территории работает Восточно-Уральский государственный заповедник.

Радиоактивное заражение в Гоянии. 13 сентября 1987 года

Несомненно, нельзя недооценивать опасность атомной энергетики, где ученые работают с большими объемами ядерного топлива и сложными устройствами. Но еще опаснее радиоактивные материалы в руках людей, которые не знают, с чем имеют дело.

В 1987 году в бразильском городе Гояния мародеры умудрились похитить из заброшенного госпиталя деталь, которая была частью оборудования для радиотерапии. Внутри контейнера находился радиоактивный изотоп цезий-137. Воры не разобрались, что делать с этой деталью, поэтому решили просто выбросить ее на свалку.
Через некоторое время интересный блестящий предмет привлек внимание проходившего мимо хозяина свалки Девара Феррейры. Мужчина додумался принести диковинку домой и показать ее своим домочадцам, а также созвал друзей и соседей, чтобы те полюбовались на необычный цилиндр с интересным порошком внутри, который светился голубоватым светом (эффект радиолюминесценции).

Крайне непредусмотрительные люди даже не подумали о том, что такая странная вещь может быть опасной. Они брали в руки части детали, трогали порошок хлорида цезия и даже натирали им кожу. Им нравилось приятное свечение. Дошло до того, что кусочки радиоактивного материала начали передавать друг другу в качестве подарков. В связи с тем, что радиация в таких дозах не имеет мгновенного действия на организм, никто не заподозрил неладного, и порошок распространялся среди жителей города на протяжении двух недель.

В результате контакта с радиоактивными материалами погибло 4 человека, среди которых была жена Девара Феррейры, а также 6-летняя дочь его брата. Еще несколько десятков человек проходили курс терапии от радиационного облучения. Некоторые из них скончались позже. Сам Феррейра выжил, но у него выпали все волосы, а также он получил необратимые поражения внутренних органов. Мужчина весь остаток жизни винил себя в произошедшем. Он скончался от рака в 1994 году.

Несмотря на то, что катастрофа имела локальный характер, МАГАТЭ присвоила ей 5 уровень опасности по международной шкале ядерных событий из 7 возможных.
После данного инцидента была разработана процедура утилизации радиоактивных материалов, используемых в медицине, а также ужесточен контроль за этой процедурой.

Катастрофа Фукусимы. 11 марта 2011 года

Взрыв на атомной электростанции Фукусима в Японии 11 марта 2011 года приравняли по шкале опасности к Чернобыльской катастрофе. Обе аварии получили по 7 баллов по международной шкале ядерных событий.

Японцы, которые в свое время стали жертвами Хиросимы и Нагасаки, теперь получили в свою историю еще одну катастрофу планетарного масштаба, которая, однако, в отличие от своих мировых аналогов не является следствием человеческого фактора и безответственности.

Причиной Фукусимской аварии стало разрушительное землетрясение с магнитудой более 9, которое было признано самым сильным землетрясением в истории Японии. В результате обрушений погибло почти 16 тысяч человек.

Толчки на глубине более 32 км парализовали работу пятой части всех энергоблоков в Японии, которые находились под управлением автоматики и предусматривали такую ситуацию. Но последовавшее за землетрясением гигантское цунами довершило начатое. В некоторых местах высота волн достигала 40 метров.

Цунами, которое накрыло Японию спустя полчаса после землетрясения, вывело из строя систему аварийного питания охлаждения реактора, вследствие чего дизель-генераторные установки прекратили работать. Внезапно персонал станции столкнулся с угрозой перегрева реакторов, которую было необходимо ликвидировать в кратчайшие сроки. Персонал АЭС приложил все усилия, чтобы дать охлаждение на раскаленные реакторы, однако трагедии избежать не удалось.

Водород, скопившийся в контурах первого, второго и третьего реакторов, создал такое давление в системе, что конструкция не выдержала и раздалась серия взрывов, вызвавшая обрушение энергоблоков. В довесок загорелся 4-й энергоблок.

В воздух поднялись радиоактивные металлы и газы, которые распространились по близлежащей территории и попали в воды океана. Продукты горения из хранилища ядерного топлива поднимались на высоту нескольких километров, разнося радиоактивный пепел на сотни километров вокруг.

Для охлаждения реакторов была организована система подачи воды, которая, в результате циркуляции в системе, становится радиоактивной. Эта вода скапливается в резервуарах на территории станции, а ее объемы достигают сотен тысяч тонн. Места для подобных резервуаров уже почти не осталось. Проблема с откачкой радиоактивной воды из реакторов не решена до сих пор, поэтому нет гарантии, что она не попадет в мировой океан или почву под станцией в результате нового землетрясения.

Прецеденты просачивания сотен тонн радиоактивной воды уже были. Например, в августе 2013 года (утечка 300 тонн) и феврале 2014 года (утечка 100 тонн). Уровень радиации в грунтовых водах постоянно повышается, и люди никак не могут на это повлиять.

На данный момент были разработаны специальные системы по дезактивации зараженной воды, которые позволяют обезвреживать воду из резервуаров и использовать ее повторно для охлаждения реакторов, но эффективность таких систем чрезвычайно низкая, а сама технология еще недостаточно развита.

Учеными был разработан план, который предусматривает извлечение из реакторов в энергоблоках расплавленного ядерного топлива. Проблема в том, что человечество на данный момент не располагает технологиями для проведения такой операции.

Радиоактивное заражение в Краматорске. 1980-1989 годы

Еще один пример человеческой халатности при обращении с радиоактивными элементами, которая привела к гибели невинных людей.

Радиационное заражение произошло в одном из домов города Краматорск, Украина, но у события есть своя предыстория.

В конце 70-х годов в одном из горнодобывающих карьеров Донецкой области рабочие умудрились потерять капсулу с радиоактивным веществом (цезием-137), которая использовалась в специальном приборе для измерения уровня содержимого в закрытых сосудах. Потеря капсулы вызвала панику у руководства, ведь щебень из этого карьера доставляли в т.ч. и в Москву. По личному приказу Брежнева, добыча щебня была прекращена, но было поздно.

В 1980 году в городе Краматорск строительное управление сдало в эксплуатацию панельный жилой дом. К несчастью, капсула с радиоактивным веществом попала вместе со щебнем в одну из стен дома.

Лишь упорство отца погибшего мальчика позволило определить причину. После замеров радиационного фона в квартире стало понятно, что он зашкаливает. После недолгих поисков был определен участок стены, откуда шел фон. После доставления куска стены в Киевский институт ядерных исследований, ученые извлекли оттуда злосчастную капсулу, размеры которой были всего 8 на 4 миллиметра, но излучение от нее составляло 200 миллирентген в час.

Результатом локального заражения на протяжении 9 лет стала гибель 4 детей, 2 взрослых, а также инвалидность 17 человек.

Цель – исследование наиболее крупных техногенных катастроф и аварий за весь период деятельности человека и их последствий, а также их поражающих факторов. Анализ статистических данных и данных последних лет, которые свидетельствуют о всевозрастающей роли техногенных катастроф.

Содержание работы

Введение
1 Понятие ядерного оружия. Характеристика ядерного оружия
2 Виды ядерных взрывов. Их воздействие
3 Понятие техногенной катастрофы. Причины техногенных катастроф
4 Основные поражающие факторы техногенных катастроф. Их влияние на природу.
Заключение
Список литературы

Файлы: 1 файл

Ядерное оружие.docx

Радиоактивное заражение имеет ряд особенностей, отличающих его от других поражающих факторов ядерного взрыва. К ним относятся: большая площадь поражения – тысячи и десятки тысяч квадратных километров; длительность сохранения поражающего действия – дни, недели, а иногда и месяцы; трудности обнаружения радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков.

3 Понятие техногенной катастрофы. Причины техногенных катастроф

Техногенная катастрофа – это следствие умышленных или неумышленных действий человека (в большинстве случаев).

Основные причины аварий и катастроф:

  • Просчеты при проектировании и недостаточный уровень безопасности современных зданий;
  • Некачественное строительство или отступление от проекта;
  • Непродуманное размещение производства;
  • Нарушение требований технологического процесса из-за недостаточной подготовки или недисциплинированности и халатности персонала.

Далее мы рассмотрим причины более подробно.

В зависимости от вида производства, аварии и катастрофы на промышленных объектах и транспорте могут сопровождаться взрывами, выходом ОХВ, выбросом радиоактивных веществ, возникновением пожаров т.п.

Техногенные катастрофы подразделяются на следующие виды:

Подробнее о некоторых:

Взрыв – процесс быстрого неуправляемого физического или химического превращения системы, сопровождающийся переходом ее потенциальной энергии в механическую работу. При химических взрывах вещества могут быть твердыми, жидкими, газообразными, а также аэровзвесями горючих веществ в воздухе.

Пожары на промышленных объектах

Под пожаром понимают неконтролируемый процесс горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей. Причиной возникновения пожаров на промышленных объектах можно разделить на две группы. Первая – это нарушение противопожарного режима или неосторожное обращение с огнем, вторая – нарушение пожарной безопасности при проектировании и строительстве зданий. Пожары могут возникнуть при взрыве в помещениях или производственных аппаратах при утечках и аварийных выбросах пожаровзрывоопасных сред в объемы производственных помещений.

Аварии с выбросом (угрозой выброса) сильнодействующих ядовитых веществ (СДЯВ)

СДЯВ – это обращающиеся в больших количествах в промышленности и на транспорте токсические химические вещества, способные в случае разрушения (аварий на объектах) легко переходить в атмосферу и вызвать массовые поражения людей.

Аварии с выбросом (угрозой выброса) радиоактивных веществ (РВ)

Воздействие радиации приводит к гибели живых организмов. В результате радиационного заражения развивается лучевая болезнь, нарушающая генетику организма. Появление излучения связано с функционированием предприятий, и использующих радиоактивные материалы, авариями на ядерных установках и деятельностью организаций по переработке и захоронению радиоактивных отходов.

Аварии с выбросом (угрозой выброса) биологически опасных веществ БОВ

Биологически опасные вещества БОВ – вещества, способные вызвать массовые инфекционные заболевания людей и животных при попадании в организм в ничтожно малых количествах. К БОВ относятся болезнетворные микробы и бактерии возбудители различных особо опасных инфекционных заболеваний: чумы, холеры, натуральной оспы, сибирской язвы и т.д.

Аварии на очистных сооружениях

В данной отрасли промышленности различают две группы аварий:

– На очистных сооружениях сточных вод промышленных предприятий с выбросом более 10 тонн.

– На очистных сооружениях промышленных газов с массовым выбросом загрязняющих веществ

4 Основные поражающие факторы техногенных катастроф. Их влияние на природу

Основными поражающими факторами техногенных катастроф являются:

  • динамические (механические). Поражения ударной волной взрыва за счет: избыточного давления во фронте ударной волны – непосредственное воздействие механической силы на тело человека; скоростного напора – отбрасывание человека с последующим его падением; вторичных снарядов, образующихся в результате разрушающего действия ударной волны на объекты внешней среды.
    Механические травмы возникают также при землетрясениях, смерчах, селях, транспортных катастрофах, авариях, на производствах и др.;
  • Термические. Воздействие высоких температур (световое излучение, пожары и др.) обуславливает возникновение общего перегревания организма, термические ожоги; воздействие низких температур – общее переохлаждение организма и отморожения
  • Радиационные. Являются следствием аварий на радиационно-опасных объектах. В результате воздействия ионизирующего излучения на организм, могут развиться лучевая болезнь (острая и хроническая), лучевые ожоги кожи, поражения внутренних органов – при попадании радиоактивных веществ в организм через дыхательные пути, желудочно-кишечный тракт;
  • Химические (сильно действующие ядовитые вещества, промышленные яды и др.). Воздействуют на людей при химических авариях, вызывая разнообразные (по характеру и тяжести) поражения;
  • Биологические (бактериологичес кие) средства (токсины, бактерии и т. п.). Выброс и распространение которых возможен при авариях на биологически опасных объектах, что может привести к массовым инфекционным заболеваниям;
    – психогенный (воздействие имеющихся поражающих факторов катастрофы на психику людей).

Поражающие факторы источников техногенных ЧС классифицируются по происхождению и механизму воздействия. По происхождению подразделяются на факторы: прямого действия или первичные; побочного действия или вторичные. Первичные поражающие факторы непосредственно вызываются возникновением источника ЧС. Вторичные поражающие факторы вызываются изменением объектов окружающей среды под воздействием первичных поражающих факторов. Поражающие факторы источников техногенных ЧС по механизму действия подразделяют на факторы: физического действия; химического действия. К поражающим факторам физического действия в условиях промышленного производства относят: воздушную ударную волну; волну сжатия в грунте; сейсмовзрывную волну; волну порыва гидротехнических сооружений; обломки или осколки; экстремальные нагрев среды; тепловые излучения; ионизирующее излучение. К поражающим факторам химического действия относят токсическое действие опасных химических веществ.
По степени потенциальной опасности, приводящей к подобным катастрофам в техногенной сфере гражданского комплекса, можно выделить объекты ядерной, химической, металлургической и горнодобывающей промышленности, уникальные инженерные сооружения (плотины, эстакады, нефтегазохранилища), транспортные системы (аэрокосмические, надводные и подводные, наземные), перевозящие опасные грузы и большие массы людей, магистральные газо- и нефтепродуктопроводы. Аварии и катастрофы на указанных объектах могут инициироваться опасными природными явлениями – землетрясениями, ураганами, штормами. Сами техногенные аварии и катастрофы при этом могут сопровождаться радиационными и химическими повреждениями и заражениями, взрывами, пожарами, обрушениями.

1. Аварии на гидротехнических сооружениях ( аварии на ГЭС)

Опасность возникновения затопления низких близлежащих районов при разрушении плотин, дамб и гидроузлов. Стремительный и мощный поток воды может вымывать почвы со всей растительностью, смывать чернозем. Существует опасность возникновения селей. При достаточно высоких волнах животные на территории места затопления выбираются на возвышенности, могут провести там достаточно много времени.

2. Аварии на АЭС

3. Промышленные взрывы

Самым сильным поражающим фактором является воздушная ударная волна. Ее источник – высокое давление и температура в точке взрыва. Опасность ударной волны состоит в том, что скорость перемещения воздуха может быть более 100 м/с. При этом окружающая среда может пострадать в разной степени тяжести поражения.

По степени тяжести поражения людей от ударной волны травмы делятся: на легкие при скоростном напоре = 20-40 кПа (вывихи, ушибы); средние при скоростном напоре = 40-60 кПа), (контузии, кровь из носа и ушей); тяжелые при скоростном напоре≥ 60 кПа (тяжелые контузии, повреждения слуха и внутренних органов, потеря сознания, переломы); смертельные при скоростном напоре≥ 100 кПа. Световое излучение ядерного взрыва может способствовать возникновению пожара и огневого шторма, который очень быстро перемещается в лесных сухих зонах.

Итак, большую опасность представляют техногенные катастрофы, которые возникают вследствие нарушения технологического процесса или внезапного выхода из строя машин, механизмов и технических устройств во время их эксплуатации. К техногенным катастрофам относятся различные аварии на промышленных и энергетических объектах, а также на транспорте, растекание по поверхности почвы и воды токсичных жидкостей и нефтепродуктов и др. Крупные аварии и катастрофы техногенного характера в последние десятилетия оказали существенное влияние на жизнь и здоровье планеты, среду его обитания.

Техногенные катастрофы детерминированы человеческим фактором, поэтому проводится работа по их профилактике: ведется тестированиетехники на вопрос её износа, проверяется дисциплина и профессионализм обслуживающего персонала. Поскольку полностью предотвратить возможность техногенной катастрофы нельзя, то необходимо предусмотреть мероприятия по своевременному оповещению о её возможном начале, планы её локализации, эвакуации населения из пострадавшего района и организация помощи пострадавшим и выжившим в зоне бедствия.

Аварии и катастрофы весьма частые явления в нашей стране, каждому присущи свои особенности, характер поражений, объем и масштабы разрушений, величина бедствий и человеческих потерь. Знание причин возникновения и ЧС техногенного характера позволяет при заблаговременном принятии мер защиты, при разумном поведении населения в значительной мере снизить все виды потерь.

Таким образом, все население должно быть готово к действиям в экстремальных ситуациях, уметь владеть способами оказания первой медицинской помощи пострадавшим.

Когда-то люди считали, что ядерная энергия однажды решит все энергетические проблемы человечества. От ядерных энергоустановок до авиалайнеров, которые нужно подзаряжать раз в 22 года, со времен Второй мировой войны великие атомные открытия бок о бок шли с возобновляемой энергией. В определенных условиях энергия атома может быть вполне безопасной и дарить тепло миллионам людей в год. Но иногда это тепло может быть нестерпимым.

На протяжении истории человечества жизни многих людей были унесены из-за неприятных событий, связанных с ядерной энергией.

Техасское происшествие

16 апреля 1947 года произошел самый ужасный взрыв в гавани в истории США. Французское грузовое судно Grandcamp перевозило груз с нитратом аммония, который обычно используется в качестве удобрений и для производства взрывчатых веществ, используемых в атомном оружии.

Зажженная сигарета, брошенная одним из докеров, вызвала пожар на погрузочном доке. Он быстро перекинулся в один из грузовых трюмов Grandcamp и воспламенил нитрат аммония.

Капитан корабля приказал задраить люки, чтобы удержать огонь, но повышение температуры только улучшило условия для взрыва летучего химиката. High Flyer, судно неподалеку, несущее серу, также было затронуто и взорвалось через день вследствие пожаров, вызванных взрывом Grandcamp.

Ядовитый газ быстро наполнил воздух над городом. К сожалению, так совпало, что в то же время бастовали рабочие телефонного оператора, поэтому работники скорой не могли оперативно подхватывать пострадавших от токсинов в воздухе. Более 500 человек погибло вследствие этого инцидента, в том числе и 28 пожарных, задействованных для тушения пожара в доке.

В результате этого события были приняты новые меры безопасности, гарантирующие безопасную перевозку нитрата аммония. В доках появилась центральная система реагирования для быстрого отклика на чрезвычайные ситуации, а судоходные компании обязали использовать специальные запечатанные контейнеры и хранить химические вещества подальше от других опасных материалов.

18 сентября 1980 года возле города Дамаск в Арканзасе случился взрыв ракеты. Случился он потому, что член ремонтной бригады сбросил 4-килограммовый патрубок с ракетной платформы и пробил нижний топливный бак ракеты. Дэвид Пауэлл нарушил технический приказ ВВС США использовать динамометрический ключ вместо ранее использовавшегося храповика при проведении ремонта. Как только летчики увидели утечку топливного пара в бункере, все члены экипажа были эвакуированы на поверхность.

Дэйв Ливингстон и Джеффри Кеннеди, два эксперта-ремонтника, были вызваны в бункер, чтобы проверить повреждения ракеты. Они вошли внутрь и обнаружили, что бак окислителя быстро теряет давление. Они вернулись на поверхность и открыли бункер, чтобы впустить газ. Через несколько минут бункер взорвался и послал боеголовку ракеты в воздух.

Через сутки поиска 12-килотонную бомбу нашли в нескольких сотнях метров от места взрыва и подобрали американские военные. Сама ракета представляла собой крупнейшее ядерное оружие в арсенале США и могла привести к взрыву в 600 раз большему, чем в Хиросиме. Ливингстона ранило взрывом, и он умер вскоре после появления в больнице. Также пострадал еще 21 человек.

Дэвида Пауэлла позже разжаловали за нарушение протокола. До того дня он не считал себя виновным в случившемся. Позже правительство объявит, что виной всему стала человеческая ошибка.

Паломарский инцидент с водородной бомбой

С водородными бомбами тоже бывают инциденты.

Местное население не осознавало, что обломки распространят радиоактивный плутоний по всему району, загрязняя землю и водоснабжение всего города. Три бомбы немедленно восстановили. Четвертую не могли найти три месяца, аж до 7 апреля 1966 года.

Впервые в истории американские военные показали общественности ядерное оружие. Проверка населения выявила некоторые следы радиации, и показатели рака были аналогичны тем, которые наблюдались в других городах в этой области. С момента обнаружения загрязнения в почве в 2006 году, американское правительство, наконец, согласилось помочь Испании в восстановительном процессе. Вопрос не удалось решить сразу.

Кыштымский ядерный инцидент

Вреда от этого было больше, чем пользы.

Кыштымский инцидент занимает третье место в списке крупнейших ядерных катастроф. Он произошел в городе Маяк на Уральских горах в Советском Союзе 29 сентября 1957 года, в разгар холодной войны.

На заводе в Маяке производили шесть материалов, необходимых для разработки оружейного плутония. В то время СССР не информировал своих рабочих о серьезной возможности радиационного отравления радиоактивными материалами.

В то время завод использовал труд местных заключенных для утилизации отходов, сбрасывая их в реку Теча. Ближайшие жители не знали о заражении, пока один из местных мужчин не заполучил серьезные ожоги и, как следствие, ампутацию ног.

Уровень рака щитовидной железы в этом регионе сейчас в три раза выше, чем в сопоставимых областях. По сей день люди там страдают от врожденных дефектов, радиационных ожогов и семи редких форм рака, которые обычно не наблюдаются среди населения страны.

СССР никак не предупреждал людей в течение многих лет после первоначального загрязнения, и российские регулирующие органы не обслуживали завод и не защищали гражданское население. Техники завода не заметили структурной неисправности в одной из систем охлаждения, что вызвало цепную реакцию.

29 сентября 1957 года проблема с охлаждением привела к сильному взрыву в одном из баков с радиоактивными отходами. Взрыв распространил радиоактивные вещества на площади, где жили около 300 000 человек.

Многие люди, живущие в этой области, до сих пор борются за право на переселение. Из-за политического невежества и человеческой ошибки Маяк и окружающая его область считается самым загрязненным местом на Земле.

Токаймурская ядерная авария

Когда взрывается станция, ничего хорошего не жди.

Японская компания по переработке ядерного топлива создала перерабатывающий завод возле Токаймуры для производства обогащенного урана для заводского ядерного реактора. Для подготовки топлива и заполнения резервуара были назначены три техника.

Топливо этого типа не производилось на заводе три года, и техники не имели никакой квалификации для работы по назначению. Этот недостаток знаний и опыта привел к одной из худших аварий в истории индустриальной Японии.

Техники неосознанно переполнили резервуар для осадков, который имел максимальную мощность 2,4 килограмма. Когда масса дошла до критического порога, бак был заполнен 16 килограммами урана.

Началась негативная реакция, которая произвела кратковременную синюю вспышку. Все три техника мгновенно получили смертельную дозу радиации. Также резервуар начал извергать радиоактивные вещества иттрий-94 и барий-140 в воздух над заводом.

Двое ответственных техников погибли от радиационных ожогов и воздействия гамма-излучения. Остальной команде удалось опорожнить резервуар и заменить охлаждающие материалы борной кислотой, которая вернула уран на докритический уровень. Гражданских эвакуировали в течение двух дней, а японские власти усердно работали над очисткой территории.

Авария в Уиндскейле

Авария в Уиндскейле

Самая ужасная ядерная катастрофа в Европе произошла 10 октября 1957 года в Камбрии, Соединенное Королевство. Объект в Уиндскейле использовал систему ядерных реакторов, которые контролировались графитом.

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

Построенная в 1951 году станция предназначалась для производства атомного оружия для британского правительства. Утром 8 октября 1957 года инженеры станции заметили, что одна из систем остывала и не соответствовала рабочей температуре.

Они применяли цикл Вигнера, который повторно использовал захваченную энергию из реактора для охлаждения и нагрева реактора. Тест оказался успешным. Но два дня спустя инженеры заметили, что температура в реакторе снова была некорректной, и решили нагреть реактор. Они не знали, что в первом реакторе пожар. Используя систему, которая накачивала кислород в реактор, они просто раздули огонь.

Пожар бушевал три дня. Обычные методы, такие как вода, нельзя было использовать, поскольку вода окисляется радиоактивными материалами и может привести к еще большему повреждению структуры.

Наконец, инженеры поняли, что огонь потеряет кислородную подпитку, если закрыть люк в верхней части дымохода первого реактора. Так и поступили, и пожар успешно остановили через 24 часа. Никаких жертв не было.

Тем не менее позже выяснилось, что определенное загрязнение все-таки достигло Великобритании и стало причиной повышения уровня рака щитовидной железы. С тех пор реактор запечатали и закрыли, но британское правительство постановило, что станцию нельзя будет полностью выключить до 2060 года.

Случай с B-52 в Голдсборо

Экипаж танкера заметил, что у B-52 сочится топливо из правого крыла, и бомбардировщику поступил приказ возвращаться на базу. На подходе к взлетной полосе серьезная утечка в топливном баке привела к серьезным механическим повреждениям, в результате чего самолет остался без контроля на высоте 3000 метров.

При посадке самолет развалился на части и высадил две бомбы в окружающую среду. Три члена экипажа погибли в результате аварии. Остальные приземлились благополучно. Воздушные силы немедленно отправили поисковые группы на поиск пропавших бомб.

Обе бомбы быстро восстановили. Однако взрывотехники обнаружили, что одна бомба прошла три из четырех стадий боеготовности. Если бы эти бомбы не должен был заводить пилот в самолете перед отправкой, погибли бы миллионы людей.

Авария на Фукусиме

Фукусима является одной из самых современных катастроф Надеюсь последней.

11 марта 2011 года на побережье Японии произошло землетрясение. Тектоническое движение от первоначального землетрясения вызвало цунами, которое направилось прямо на ядерную станцию Фукусима-Дайити.

Массивная волна, которая двигалась со скоростью в несколько сотен километров в час, нанесла огромный ущерб системам охлаждения и вентиляции, которые чрезвычайно важны для контроля температуры в каждом реакторе. Это привело к немедленному выбросу радиоактивности.

После месяца оценки ущерба местному населению, японское правительство заявило о создании 20-километровой запретной зоны, 19 апреля 2011 года. Жителей эвакуировали и переселили. Правительство назначило выключить все шесть реакторов, и через год они были полностью закрыты.

Сегодня эта область чрезвычайно загрязнена, а радиация продолжает выделяться. Японскому правительству еще предстоит найти решение.

Авария на Три-Майл-Айленд

Это было уже 50 лет назад.

28 марта 1970 года произошла одна из самых страшных ядерных катастроф в истории США, на ядерном объекте Три-Майл-Айленд в Пенсильвании. Работники завода не заметили, что механический сбой в системе охлаждения вызвал значительное увеличение температуры ядра в реакторе.

К сожалению, на этом объекте не было систем предупреждения или датчиков. Работники реактора отключили подачу охлаждающей жидкости в реактор, тот перегрелся и половина его уранового ядра растаяла. Хотя выброс радиации был, местные жители не пострадали.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

Угроза, которую создал этот завод для двух миллионов человек, подогрел протесты активистов, борющихся против ядерной энергетики. 1 апреля 1979 года президент Джимми Картер проинспектировал завод, чтобы убедиться, что действия по предотвращению подобной аварии предпринимаются. Почти сорок лет после этого Три-Майл-Айленд работал без дальнейших аварий. Тем не менее завод планируется вывести из эксплуатации в 2019 году из-за конкурентных цен за природный газ.

Чернобыльская трагедия

Сомнительное достижение, но Чернобыль возглавляет наш сегодняшний рейтинг.

Худшая ядерная катастрофа, которая потрясла целую планету, произошла 26 апреля 1986 года на Чернобыльской АЭС возле Припяти в Советском Союзе (сейчас Украина). То, что должно было стать рутинным тестом безопасности, для четвертого реактора Чернобыльской АЭС стало катастрофическим плавлением.

Советское правительство предоставило подробный список инструкций для работников, которых следовало придерживаться, чтобы безопасно произвести тест. Но один из сменщиков решил пренебречь протоколом и неправильно выполнил последовательность при работе с сердечником.

Интенсивное тепло от сердечника привело к массивному выбросу пара, разрушило треть здания и выпустило смертельное количество радиоактивного материала в атмосферу, которая понесла облако в Азию и Европу. Первым группам пожарных пришлось буквально голыми руками бороться с радиоактивным сырьем и пожаром.

И по сей день расплавленная груда радиоактивного осадка лежит под ядром реактора. Если простоять рядом с ней 30 секунд, можно получить радиоактивные ожоги. Если постоять больше четырех минут, на жизнь останется всего несколько дней.

Пожарные, работавшие в районах выпавшего осадка, умерли от сильных радиационных ожогов в местном городе Припять. Их пожарные костюмы все еще лежат в подвале больницы, и комната, в которой они находятся, является одним из самых облученных мест в зоне отчуждения. Советское правительство направило более 500 000 спасателей бороться с аварией. Многие погибли, хоть и не сразу.

50 000 человек населения Припяти должны были эвакуировать, людям позволили взять только ценные вещи. Через девять месяцев Советский Союз запечатал реактор саркофагом из стали и бетона.

Хотя в этой области нельзя будет жить в течение ближайших 50 000 лет, правительство не закрывало станцию до начала 2000-х.

Даже сегодня трудно определить степень ущерба, нанесенного в результате аварии на Чернобыльской АЭС. Жертвы аварии по-прежнему страдают от высоких показателей рака щитовидной железы и врожденных дефектов. Впрочем, некоторые умудряются жить в зоне отчуждения.

Читайте также:

      

  • Международный уголовный суд история создания и правовая основа реферат
  •   

  • Реферат пункция и катетеризация подключичной и наружной яремной вен
  •   

  • Виды плановых ремонтов нефтяных и газовых скважин реферат
  •   

  • Имитационное моделирование транспортных систем реферат
  •   

  • Музыкальное воспитание в семье реферат

Аварии на зарубежных атомных электростанциях

Введение

В связи с постоянным стремлением человечества улучшить свою жизнь, мы постоянно ускоряем темпы производства. Это не может не отразиться на такой отрасли как энергетика. Самой распространённой и экологически чистой из всех энерговырабатывающих станций является атомная. Но как мы знаем, при аварии на данных станциях, происходит глобальное радиационное заражение окружающей среды.

Именно поэтому так важно изучить ошибки, которые были допущены на атомных станциях. Таким образом, актуальность данной проблемы объясняется следующими аспектами:

.Аварии на АЭС и радиоактивное заражение территории создают экстремальную ситуацию в пострадавших регионах;

.Изменение безопасности развития ядерной энергетики по опытам прошлых аварий.

Объектом нашего исследования являются аварии на АЭС.

Предметом нашего исследования являются причины аварий на атомных электростанциях и предотвращение их последствий.

Цель данного исследования заключается в изучении причин аварий на АЭС и способов предотвращения их последствий.

И чтобы достичь поставленной цели, мы выдвигаем следующие задачи реферата:

.Познакомиться с хронологией аварий и катастроф на АЭС и других ядерных энергетических установках;

.Проанализировать способы снижения радиоактивного фона;

.Рассмотреть перспективы автономной энергетики.

Аннотация

Данная работа посвящена влиянию аварий и катастроф на АЭС на биоту и жизнь человека. Кроме этого были проанализированы способы снижения радиоактивного фона, а так же были рассмотрены возможные перспективы автономной энергетики.

1.Аварии и катастрофы на АЭС и других энергетических установках

Атомная электростанция (АЭС) – ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками.

Мировыми лидерами в производстве ядерной электроэнергии являются: США, Франция, Япония, Россия, Корея и Германия. В мире действует 441 энергетический ядерный реактор общей мощностью 374,692 ГВт, российская компания «ТВЭЛ» поставляет топливо для 76 из них.

1.1История атомной энергетики

Во второй половине 40-х гг., ещё до окончания работ по созданию первой советской атомной бомбы, советские учёные приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого сразу же стала электроэнергетика.

В 1948 г. по предложению И.В. Курчатова и в соответствии с заданием партии и правительства начались первые работы по практическому применению энергии атома для получения электроэнергии

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 в СССР, в городе Обнинск, расположенном в Калужской области. В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт, впоследствии полная проектная мощность была доведена до 600 МВт. В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди дал ток потребителям. В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969. В 1973 г. запущена Ленинградская АЭС.

За пределами СССР первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 в Колдер-Холле. Через год вступила в строй АЭС русск. мощностью 60 МВт в Шиппингпорте.

В 1979 году произошла серьёзная авария на АЭС Три-Майл-Айленд, а в 1986 году – масштабная катастрофа на Чернобыльской АЭС, которая, помимо непосредственных последствий, серьёзно отразилась на всей ядерной энергетике в целом. Она вынудила специалистов всего мира переоценить проблему безопасности АЭС и задуматься о необходимости международного сотрудничества в целях повышения безопасности АЭС.

мая 1989 года на учредительной ассамблее в Москве, было объявлено об официальном образовании Всемирной ассоциации операторов атомных электростанций, международной профессиональной ассоциации, объединяющей организации, эксплуатирующие АЭС, во всём мире. Ассоциация поставила перед собой амбициозные задачи по повышению ядерной безопасности во всём мире, реализуя свои международные программы.

Крупнейшая АЭС в Европе – Запорожская АЭС у г. Энергодар, строительство которой начато в 1980 г. С 1996 г. работают 6 энергоблоков суммарной мощностью 6 ГВт.

Крупнейшая АЭС в мире Касивадзаки-Карива по установленной мощности находится в Японском городе Касивадзаки префектуры Ниигата. В эксплуатации находятся пять кипящих ядерных реакторов и два улучшенных кипящих ядерных реакторов, суммарная мощность которых составляет 8,212 ГВт [1].

1.2Характеристики аварий на АЭС

Радиационная авария – потеря управления источником ионизирующих излучений, вызванная неисправностью, повреждением оборудования, неправильным действием сотрудников (персонала), природными явлениями или иными причинами, которые могли привести или привели к облучению людей или радиоактивному загрязнению окружающей среды сверх установленных норм.

К основным источникам загрязнения окружающей среды радиоактивными веществами относятся производственные предприятия, добывающие и перерабатывающие сырье, содержащее радиоактивные вещества, ядерные объекты (ЯО), радиохимические заводы, научно-исследовательские институты и другие объекты.

Наиболее опасными источниками ионизирующих излучений и радиоактивного заражения окружающей среды являются аварии на ядерных объектах. Под радиационными авариями на ядерных объектах понимают нарушение их безопасной эксплуатации, при котором произошёл выход радиоактивных продуктов и (или) ионизирующего излучения за предусмотренные проектом для нормальной эксплуатации границы в количествах, превышающих установленные значения. Радиационные аварии характеризуются исходным событием, характером протекания и радиационными последствиями [2].

В 1988 году Международным агентством по атомной энергетике (МАГАТЭ) была разработана Международная шкала ядерных событий (англ. INES, сокр. International Nuclear Event Scale). Уже с 1990 года эта шкала использовалась в целях единообразия оценки чрезвычайных случаев, связанных с гражданской атомной промышленностью.

Шкала применима к любому событию, связанному с перевозкой, хранением и использованием радиоактивных материалов и источников излучения и охватывает широкий спектр практической деятельности, включая радиографию, использование источников излучения в больницах, на любых гражданских ядерных установках и т.д. Она также включает утрату и хищения источников излучения и обнаружение бесхозных источников.

По шкале INES ядерные и радиологические аварии и инциденты классифицируются 8 уровнями (приложение 1):

Уровень 7. Крупная авария

Уровень 6. Серьёзная авария

Уровень 5. Авария с широкими последствиями

Уровень 4. Авария с локальными последствиями

Уровень 3. Серьёзный инцидент

Уровень 2. Инцидент

Уровень 1. Аномальная ситуация

1.3Хронология аварий и катастроф на АЭС

Полная хронология событий описывается в сообщении экологического блога от 17 апреля 2011 г. Первая в мире серьёзная авария произошла 12 декабря 1952 года в Канаде, штат Онтарио, Чолк-Ривер на атомной электростанции «NRX». Техническая ошибка персонала привела к перегреву и частичному расплавлению активной зоны. Тысячи кюри продуктов деления попали во внешнюю среду, а около 3800 кубических метров радиоактивно загрязнённой воды было сброшено прямо на землю, в мелкие траншеи неподалёку от реки Оттавы.

Спустя почти 14 лет, 5 октября 1966 года в США на АЭС «Энрико Ферми» произошла авария в системе охлаждения экспериментального ядерного реактора, которая вызвала частичное расплавление активной зоны. Персонал успел вручную остановить его. Потребовалось полтора года, чтобы вновь запустить реактор на полную мощность.

Уже через три года во Франции 17 октября 1969 года на АЭС «Сант-Лаурен» при перегрузке топлива на работающем реакторе оператор ошибочно загрузил в топливный канал не тепловыделяющую сборку, а устройство для регулирования расхода газов. В результате расплавления пяти тепловыделяющих элементов около 50 килограммов расплавленного топлива попало внутрь корпуса реактора. Произошёл выброс радиоактивных продуктов в окружающую среду. Реактор был остановлен на один год.

марта 1975 года в США на АЭС «Брауне Ферри» начался пожар, продолжавшийся 7 часов и причинивший прямой материальный ущерб в 10 млн. долларов. Два реакторных блока были выведены из строя более чем на год, что принесло дополнительные убытки ещё в 10 млн. долларов. Причиной возникновения пожара стало несоблюдение мер безопасности при работах по герметизации кабельных вводов, проходивших через стену реакторного зала. Проверку этой работы осуществляли самым примитивным способом; по отклонению пламени горящей стеариновой свечи. В результате произошло воспламенение материалов изоляции кабельных отверстий, а затем огонь проник в помещение реакторного зала. Потребовались большие усилия, чтобы вывести реактор на безаварийный режим и ликвидировать пожар.

января 1976 года на АЭС «Богунице» в Чехословакии случилась авария, связанная с перегрузкой топлива. При обширной утечке «горячего» радиоактивного газа погибли два работника станции. Аварийный выход, через который они могли бы покинуть место ЧС, был заблокирован (чтобы «предотвратить частые случаи воровства»). Население относительно аварийного выброса радиоактивности предупреждено не было.

Крупнейшая авария в истории ядерной энергетики США случилась 28 марта 1979 года на АЭС «Три-Майл Айленд». В результате серии сбоев в работе оборудования и ошибок операторов на втором энергоблоке АЭС произошло расплавление 53 процентов активной зоны реактора. Случившееся напоминало «эффект домино». Сначала испортился водяной насос. Затем из-за прекратившейся подачи охлаждающей воды урановое топливо расплавилось и вышло за пределы оболочек тепловыделяющих сборок. Образовавшаяся радиоактивная масса разрушила большую часть активной зоны и едва не прожгла корпус реактора. Если бы это случилось, последствия были бы катастрофичны. Однако персоналу станции удалось восстановить подачу воды и снизить температуру. Во время аварии около 70 процентов радиоактивных продуктов деления, накопленных в активной зоне, перешло в теплоноситель первого контура. Мощность экспозиционной дозы внутри корпуса, в который были заключены реактор и система первого контура, достигла 80 Р/ч. Произошёл выброс в атмосферу инертного радиоактивного газа – ксенона, а также йода. Кроме того, в реку Саскугана было сброшено 185 кубических метров слаборадиоактивной воды. Из района, подвергшегося радиационному воздействию, эвакуировали 200 тыс. человек. В наибольшей степени пострадали жители округа Дофин, проживавшие вблизи АЭС. Серьёзные негативные последствия имела задержка на два дня решения об эвакуации детей и беременных женщин из 10-километровой зоны вокруг АЭС. Работы по очистке второго энергоблока, почти полностью разрушенного в результате аварии, заняли целых 12 лет и обошлись в 1 млрд. долларов, что фактически обанкротило компанию – владельца.

марта 1981 года в Японии на АЭС «Цугура» произошла утечка около 4 тыс. галлонов высокорадиоактивной воды сквозь трещину в дне здания, где хранились отработавшие тепловыделяющие сборки. 56 работников были подвергнуты при этом радиоактивному облучению. Всего за период с 10 января по 8 марта 1981 года произошли четыре подобные утечки. При аварийно-восстановительных работах повышенное облучение получили 278 работников АЭС.

декабря 1986 года в результате прорыва трубопровода второго контура на АЭС «Сарри» в США произошёл выброс 120 кубических метров перегретых радиоактивных воды и пара. Восемь работников АЭС попали под кипящий поток. Четверо из них скончались от полученных ожогов. Причина аварии – коррозионный износ трубопровода, который привёл к уменьшению толщины стенок трубы (с 12 до 1,6 мм).

Крупнейшая авария в истории атомной энергетики Испании (событие третьего уровня по шкале INES) произошла на АЭС «Ванделлос» 19 октября 1989 года. Пожар на первом энергоблоке АЭС. Из-за внезапной остановки одной из турбин произошли перегрев и разложение смазочного масла. Образовавшийся при этом водород взорвался, что и стало причиной возгорания турбины. Поскольку на станции не работала система автоматического пожаротушения, были вызваны пожарные подразделения соседних городов, находившихся в том числе на расстоянии до 100 километров от атомной электростанции. Борьба с огнём продолжалась более 4 часов. За это время серьёзно пострадали системы энергоснабжения турбин и охлаждения реактора. Работавшие на станции пожарные рисковали жизнью. Они не знали расположения и функций её объектов, не были знакомы с планом аварийных действий на АЭС. Применяли для тушения электрических систем воду вместо пены, что могло привести к поражению их электрическим током. Кроме того, людей не предупредили о риске работы в зонах с повышенным уровнем радиации. Так через три года после Чернобыля пожарные, уже в другой стране, стали заложниками опасной ситуации на атомной станции. К счастью, на этот раз никто из них сильно не пострадал.

В Японии 9 февраля 1991 года авария на АЭС «Михама» в 320 километрах к северо-западу от Токио. Из-за разрыва трубы произошла утечка 55 тонн радиоактивной воды из системы охлаждения реактора второго энергоблока. Радиоактивного загрязнения персонала и местности не было отмечено, но инцидент считался в то время самой серьёзной аварией на японских АЭС.

Авария третьего уровня по шкале INES была зафиксирована на Хмельницкой АЭС в Украине 25 июля 1996 года. Произошёл выброс радиоактивных продуктов в помещения станции. Один человек погиб.

Во время плановых ремонтных работ 10 апреля 2003 года на втором энергоблоке АЭС «Paks» (Венгрия) произошёл выброс в атмосферу инертных радиоактивных газов и радиоактивного йода. Причина – повреждение топливных сборок при проведении химической очистки их поверхности в специальном контейнере. Авария третьего уровня по шкале INES.

июля 2003 года на заводе по переработке радиоактивных отходов ядерного комплекса «Фуген» в 350 километрах к западу от города Токио произошёл взрыв, повлёкший за собой пожар. Экспериментальный ядерный реактор мощностью 165 МВт, заглушённый в марте 2003 года, этим происшествием не был затронут.

Авария на АЭС «Михама» 9 августа 2004 года. Из лопнувшей трубы второго контура системы охлаждения третьего энергоблока вырвалась струя пара с температурой 270° и обварила рабочих, которые находились в турбинном зале. Четыре человека погибли, 18 – серьёзно пострадали.

августа 2004 года произошла крупная утечка радиоактивной воды из системы охлаждения реактора второго энергоблока АЭС «Ванделлос» (Испания). По заявлению Испанского совета по радиационной безопасности, это наиболее серьёзная авария на этой АЭС со времени пожара в 1989 году.

марта 2011 года в Японии произошло самое мощное за всю историю страны землетрясение. В результате на АЭС «Онагава» была разрушена турбина, возник пожар, который удалось быстро ликвидировать. На АЭС «Фукусима-1» ситуация сложилась очень серьёзная – в результате отключения системы охлаждения расплавилось ядерное топливо в реакторе блока №1, снаружи блока была зафиксирована утечка радиации, в 10-километровой зоне вокруг АЭС проведена эвакуация. На следующий день, 12 марта СМИ сообщили о взрыве на АЭС.

марта 2012 года Канадские власти сообщили об утечке радиоактивной воды в озеро Онтарио с АЭС, принадлежащей компании Ontario Power. Как пишет MIGnews, АЭС расположена в городе Пикеринг, в 35 км от Торонто. В заявлении компании сообщается, что в озеро попали 73 тыс. литров радиоактивной воды. Этот факт подтвердили и представители канадской Комиссии по Ядерной Безопасности.

На французской атомной электростанции «Фламанвиль», расположенной в северо-западном департаменте Манш, 26 октября 2012 года произошла утечка радиации, в результате чего первый реактор был переведён в состояние холодной остановки. За последний год это уже не первый случай аварий на французских АЭС, что заставляет противников этого вида энергии всё активнее требовать отказа от атомной энергетики [4].

2.Методика снижения радиоактивного фона

По степени активности радиоактивные отходы делятся на:

)слабоактивные с концентрацией бета-излучающих радиоизотопов до 10-5 кюри/л;

)среднеактивные с концентрацией бета-излучателей до 1 кюри/л;

)высокоактивные с концентрацией бета-активных радиоактивных веществ свыше 1 кюри/л.

Главным источником высокоактивных РО являются ядерные реакторы.

В США и Англии жидкие радиоактивные отходы также делятся на 3 категории:

)высокоактивные – с содержанием радиоактивных веществ (РВ) в десятки кюри на 1 л;

)среднеактивные – с концентрацией РВ в несколько милликюри или десятые доли кюри;

)слабоактивные – с содержанием РВ, в 100-1000 раз превышающим ПДК, установленные для воды.

Радиоактивные отходы участвуют в локальном загрязнении радиоактивными веществами воздуха, воды, почвы и растений. Радиоактивное загрязнение внешней среды повышает уровень естественного радиоактивного фона и создаёт опасность поступления РВ в организм с водой и пищевыми продуктами. Отсюда очевидна необходимость локализации РО на месте их образования и предотвращения возможности их миграции по пищевым цепям питания человека и животных.

Жидкие РО малой и средней активности, содержащие короткоживущие радиоизотопы, выдерживают в специальных ёмкостях до снижения уровня активности, предусмотренного санитарными правилами, после чего сбрасывают в канализационную сеть или отводят в водоёмы. Выдерживание радиоактивных отходов высокой активности экономически невыгодно.

Более распространена очистка радиоактивных сточных вод коагуляцией. Для очистки применяют обычные коагулянты: Al2(SO4)3, Fe2(SO4)3 и FeCl3. Перешедшие в осадок (1-3% объёма) РВ вывозят на пункты захоронения. Наиболее полная дезактивация сточных вод достигается методом ионного обмена. Этим способом концентрация радиоактивных веществ в сточных водах может быть снижена до уровня ПДК.

Радиоактивные сточные воды биологических и медицинских учреждений до дезактивации подвергают очистке на биофильтрах по схеме обработки хозяйственно-фекальных сточных вод. После биологической очистки сточные воды подвергают концентрации методом упаривания с последующим захоронением радиоактивного осадка. Дезактивацию сточных вод после фильтрации через биологические фильтры производят путём ионообменной фильтрации.

В практике обезвреживания жидких радиоактивных отходов широкое применение находит метод упаривания сточных вод, допускающий дезактивацию радиоактивных вод любого солевого состава и любого уровня активности и обеспечивающий высокую степень дезактивации и получение концентрированного остатка высокой активности. Эффективность этого метода определяется отношением объёма жидких РО к объёму концентрата. Объём жидких РО может быть снижен после упаривания в 1000 раз. Метод непригоден при наличии в сточных водах летучих радиоактивных веществ (J131 и др.).

Для уменьшения объёма гидратных осадков после упаривания их подвергают обезвоживанию. Объем осадка при этом уменьшается в 10-15 раз. Более полное удаление влаги из гидратных осадков достигается использованием дренажных устройств с последующим высушиванием на открытом воздухе. Для полного удаления воды осадок высушивают на сушильных установках, упаковывают, отправляют в места захоронения.

Жидкие горючие Радиоактивные отходы, состоящие из смазочных масел, растворителей и экстрагентов (бензина, керосина, ацетона, эфира, спирта), следует выдерживать до спада активности в соответствии с установленными нормами ПДК. После соответствующего выдерживания горючие РО утилизируют или сжигают. При наличии долгоживущих радиоизотопов применяют сжигание, сушку, фильтрацию и отстаивание. Выделенные путём фильтрации и отстаивания твёрдые радиоактивные примеси подвергают захоронению, подобно твёрдым РО. Их смешивают с песком или землёй, упаковывают в металлические барабаны и заливают раствором бетона. Очищенные масла и растворители утилизируют или сжигают [5].

Проанализировав утилизацию РО, мы можем сделать вывод, что при такой правильной утилизации снизится и сам радиоактивный фон.

3.Перспективы автономной энергетики

авария радиоактивный атомный электростанция

Автономная энергетика имеет шанс для развития, особенно в России, так как многие предприятия нуждаются в таком виде энергетики. Установить у себя автономный источник тепла (энергии) и создать измерительно-управляющий комплекс для комбинированного внутреннего или внешнего теплоснабжения предприятия – это дело одного месяца. В каком-то смысле это абсолютно реальный пример эффективного использования на своём производстве тех самых информационных технологий, о перспективности которых так много говорят сегодня с разных трибун. Окупаемость оперативной системы внешнего или внутреннего энергообеспечения – не более одного отопительного сезона. Денежные затраты потребуются, но они в 10-100 раз меньше, чем потребовалось бы на универсальное решение этой проблемы по советским стандартам, когда денег не считали, а организация экономически эффективного экспорта своих товаров казалась красивой, но не достижимой сказкой.

Развитие малой энергетики в России может существенно улучшить экономические показатели, как промышленных предприятий, так и коммунального сектора. Технически это реально уже сегодня. Требуется лишь психологическая перестройка государственных и частных управленческих структур, возможно, понадобится также широкий научно-технический ликбез для руководителей всех уровней. Ситуация здесь в определённой степени аналогична той, что складывается в России с развитием малого бизнеса. Возникает перспективная связка «малая энергетика + малый бизнес». И малая энергетика ни в коей степени не является конкурентом Большой энергетики (ТЭЦ, ГЭС, АЭС). Эти два направления в технике развиваются в разных жизненных пространствах, взаимно дополняя друг друга. Так, используя дешёвое ночное электричество, потребитель с помощью вихревого теплогенератора, в котором для раскрутки потоков воды можно использовать электромотор, закачивает тепло в тепловой аккумулятор («соляной раствор», аккумулятор с фазовым переходом вещества и т.п.), а потом использует в дневное время. Затраты на производство товаров можно существенно сократить [6].

Заключение

Аварии на зарубежных АЭС показывают нам то, что важной проблемой на сегодняшний день является безопасная эксплуатация атомных электростанций. Ведь самое обыкновенное невыполнение техники безопасности может привести к таким же последствиям, что и ядерная война.

За последние десятилетия эксплуатации АЭС произошло немало катастроф, и основная их часть происходит из-за человека. Малейшая ошибка приводит к катастрофическим последствиям, которые в дальнейшем могут являться неразрешимыми. Ведь при аварии на АЭС создаётся экстремальная ситуация в пострадавших регионах. Что оставляет радиационный отпечаток на долгие годы.

Совсем недавно страны Европы начали отказываться от данного вида энергетики. Хотя они и понизят тем самым процент аварий на АЭС, но это совсем не выход. Ведь атомная энергетика довольно-таки молодая энергетика, и поэтому данной отрасли следует ещё развиваться. А такими категоричными шагами развитие полностью ликвидируется. Для будущего прогресса требуется лишь доскональное изучение прошлых ошибок и предотвращение их повторения.

Сегодня люди должны подумать о своём будущем, о том в каком мире они будут жить уже в ближайшие десятилетия.

Список литературы

1.#”justify”>2.#”justify”>3.ИНЕС Руководство для пользователей международной шкалы ядерных и радиологических событий [МАГАТЭ и ОЭСР / Агентство по ядерной энергии]. – Вена, Австрия: Изд-во МАГАТЭ, 2008. – 238 с.

4.#”justify”>5.#”justify”>6.http://innovatory.narod.ru/sharkov.html (дата обращения: 20.12.2012 г.)

Шестого сентября Международное агентство по атомной энергии (МАГАТЭ) опубликовало доклад о состоянии Запорожской АЭС, вокруг которой ведутся боевые действия. Посетившие ее инспекторы зафиксировали повреждения хранилища ядерного топлива и здания, где расположена система защиты станции. Plus-one.ru сделал подборку самых крупных ядерных катастроф, чтобы напомнить о том, к чему они могут привести.

Поисково-спасательная операция после аварии на АЭС «Фукусима-1»

Уровень по международной шкале ядерных событий МАГАТЭ (INES)*: 7 из 7

Объем выброшенных радионуклидов: более 5 млн кюри, или 185 тыс. терабеккерель. Для сравнения: за год работы АЭС-2006 мощностью 1200 МВт в Воронежской области выбрасывает в атмосферу около 50 терабеккерель, по данным Bellona.ru.

Катастрофа на «Фукусиме-1» случилась из-за мощного землетрясения магнитудой 9 баллов, которое вызвало цунами. Станция была затоплена, повреждена система охлаждения. Почти пять дней команда ликвидаторов пыталась предотвратить аварию на реакторах, но не получилось — на трех из шести блоков произошли взрывы.

Пока спасатели работали на АЭС, из близлежащих районов было эвакуировано более 150 тыс. японцев. Около 50 человек погибли, 16 сотрудников станции получили травмы, десятки — радиоактивное облучение. Впоследствии, по оценкам медиков, из-за перенесенного во время аварии стресса преждевременно скончались почти 2300 человек, в основном пожилые люди.

В МАГАТЭ настаивают, что ни один человек от полученного при аварии облучения не погиб. Впрочем, в 2018-м японские власти признали, что от рака легких в возрасте 50 лет умер один из ликвидаторов.

Спустя 11 лет после катастрофы несколько городов возле АЭС все еще закрыты для посещения. В 2021 году участники экологического движения Greenpeace замерили уровень радиации в 40-километровой зоне от места аварии — показатель составил 8,39 микрозиверт в час при норме 0,5. Если провести там четыре дня, доза облучения превысит 800 микрозиверт, что существенно увеличит риск развития онкозаболеваний.

На полную очистку территории, по оценкам японских властей, понадобится 30-40 лет.

Разрушенный четвертый энергоблок Чернобыльской АЭС

Фото: Валерий Зуфаров, Владимир Репик / ТАСС

Объем выброшенных радионуклидов: по консервативным оценкам, 50 млн кюри, также называется цифра 380 млн кюри

Авария на четвертом энергоблоке АЭС, расположенном вблизи города Припять Киевской области, случилась во время планового отключения системы аварийного охлаждения реактора. Взрыв разрушил реактор, частично обрушилось здание энергоблока, начался выброс радионуклидов. Пожар продолжался 10 дней.

Площадь радиоактивного загрязнения превысила 200 тысяч квадратных километров на территории Украины, Беларуси и России. По оценкам ООН, ему подверглись около 5 млн человек, более 600 тыс. получили серьезное облучение: из них 200 тыс. участвовали в аварийно-восстановительных работах, 135 тыс. человек были эвакуированы из 30-километровой зоны вокруг АЭС. Радиоактивные осадки, образованные при чернобыльской катастрофе, выпали в советской Арктике, Норвегии, Финляндии и Швеции.

В последующие 20 лет у 4 тыс. детей и подростков был диагностирован рак щитовидной железы, у 134 из 470 человек, находящихся в момент аварии на станции, была выявлена острая лучевая болезнь — смертельное заболевание, при котором разрушаются клетки и нарушается работа всего организма.

Дети из села Муслюмово, расположенного на берегу реки Течи в 78 км от места сброса радиоактивных отходов комбината «Маяк»

Фото: Валерий Бушухин / ТАСС

Объем выброшенных радионуклидов: 20 млн кюри

Первая атомная катастрофа в СССР произошла в засекреченном уральском городе Челябинск-40 (сейчас Озерск) на комплексе хранения отходов, где находилось 20 контейнеров из нержавеющей стали. Система охлаждения с датчиками тепла и уровня воды дала сбой, и один из контейнеров взорвался.

Почти сразу же начался радиоактивный снегопад, который продолжался целые сутки. Поскольку с подобными авариями еще не сталкивались, эвакуация жителей близлежащих поселков началась лишь спустя семь дней. По официальным данным, пострадали более тысячи военнослужащих, которые занимались очисткой территории.

По информации сайта Bellona.ru, радиоактивное облако распространилось в радиусе 300-350 км по Челябинской, Свердловской и Тюменской областям, накрыв 217 населенных пунктов, где жило 270 тыс. человек. 24 поселка, оказавшихся в зоне наибольшего загрязнения, пришлось сравнять с землей.

Впоследствии выяснилось, что еще до этой катастрофы, с 1948 по 1951 годы, высокоактивные отходы комбината «Маяк» сбрасывались в местную реку Теча. По оценкам экологов, таким образом в окружающую среду попало около 2,75 млн кюри, что также привело к серьезному радиоактивному загрязнению территории.

Информация об аварии на комбинате «Маяк» замалчивалась властями вплоть до 1993 года. И сегодня, спустя 65 лет, показатель по онкологическим заболеваниям в близлежащих деревнях превышен примерно в 12 раз.

В результате пожара на атомном комплексе «Уиндскейл» произошел крупный выброс радиоактивных веществ

Фото: AP

Объем выброшенных радионуклидов: 20 млн кюри

Атомный комплекс «Уиндскейл» (позднее был переименован в «Селлафилд») находится на побережье Ирландского моря. На момент аварии он состоял из двух реакторов и занимался производством оружейного плутония. Из-за ошибок персонала на одном из реакторов произошел пожар. Сотрудникам «Уиндскейл» не удавалось его потушить несколько дней — тогда было решено затопить реактор водой. Сложность заключалась в том, что при контакте с водой расплавленный радиоактивный металл выделяет водород, который, смешиваясь с воздухом, образует взрывоопасную смесь — именно из-за нее случился взрыв на «Фукусиме-1». Наконец, пожар был потушен, но за три дня в воздух попало множество радиоактивных веществ (в частности, йод-131, вызывающий рак щитовидной железы), которые с осадками выпали по всей Европе.

Никто из сотрудников «Уиндскейла» не погиб. Эвакуация жителей окрестных территорий не проводилась. Все, на что пошли власти, — запрет фермерам в радиусе 500 кв. км от станции продавать молоко, так как оно накапливает радиоактивный йод. В 1990-х годах эксперты оценили последствия этой аварии весьма скромно — свыше 200 случаев возникновения рака (щитовидки, груди и лейкемии).

Кортеж 39-го президента США Джимми Картера покидает территорию атомной станции Три-Майл-Айленд, где случилась крупная авария

Фото: Wikimedia Commons

Объем выброшенных радионуклидов: от 2,5 до 13 млн кюри

Авария на американской станции Три-Майл-Айленд произошла в результате серии человеческих ошибок, а также недочетов в конструкции энергоблока. Из-за выбросов радиоактивных веществ пришлось эвакуировать город Мидлтаун-Боро. Специалистам АЭС удалось предотвратить воспламенение водородно-воздушной смеси — если бы это случилось, масштаб катастрофы мог бы сравняться с трагедией на Чернобыльской АЭС. Большой удачей стало то, что более 60% образовавшихся цезия и йода осели в технологических помещениях.

Позже власти уверяли, что жители окрестных деревень не получили дополнительной дозы радиации. Тем не менее авария поставила крест на планах построить в США свыше сотни новых АЭС.

Эксперт Российского социально-экологического союза, инженер-физик Андрей Ожаровский:

Важно понимать, что АЭС — лишь одно из звеньев атомного цикла, аварии происходили на многих его этапах. Например, в 1993 году произошел большой взрыв с выбросом в атмосферу радионуклидов на Сибирском химическом комбинате, который был построен с целью производства плутония для ядерных боеголовок. Ужас в том, что системы оповещения гражданского населения в находящемся неподалеку Томске просто не сработали. В 1997 году случился трехнедельный выброс радиоактивного йода-131 в НИИ атомных реакторов в Димитровграде Ульяновской области, и опять жителям не сообщили об угрозе.

Комбинат «Маяк» в самом начале своего запуска — это вообще долгоиграющая авария, которой бы сегодня был присвоен четвертый или пятый уровень опасности, так как радиоактивные отходы сбрасывались в реку. Похожая ситуация сложилась на Белоярской АЭС, которая десятилетиями сливала жидкие радиоактивные отходы в близлежащие болота.

Были случаи, когда радиоактивные отходы из-за халатности оказывались в руках обычных людей, и это тоже приводило к катастрофам. Так, в 1985 году в Бразилии сотрудники Гоянийского института лучевой терапии, переезжая в новое здание, забыли старую установку для лечения злокачественных опухолей. Осенью 1987-го ее нашли двое мародеров, которые принесли аппарат домой и попытались его разобрать. Радиация распространилась по соседним районам: облучению подверглось почти 250 человек, в 85 домах было зафиксирован высокий уровень радиоактивного загрязнения.

Проблема в том, что очистить окружающую среду от радионуклидов полностью невозможно — они оседают везде: в почве, воде, оттуда попадают в еду. После аварии на «Фукусиме» японцы собрали миллионы тонн верхнего слоя почвы, но что с ней делать? Или взять американцев, которые пытаются очистить реку Колумбия, куда уже закрытый Хэнфордский комплекс сбрасывал радиактивные отходы. Проект стоит сотни миллиардов долларов, а реализуется очень медленно.

С начала атомной эры над человечеством проводится масштабный эксперимент: биосфера насыщается искусственными радионуклидами, которых в природе не существовало и которые теперь выделяются не только в ходе аварий, но и на всех этапах атомного цикла. Среди этих радионуклидов есть долгоживущие и даже почти вечные — как они повлияют на эволюцию всего живого на Земле, предсказать сложно.

Подписывайтесь на наш канал в Telegram


Подборка по базе: ПОЖАРНАЯ И АВАРИЙНО-СПАСАТЕЛЬНАЯ ТЕХНИКА «Специальное аварийно-с, соп по аварийным с вакциной.docx, КР Тактика тушения пожаров и проведение аварийно-спасательных ра, Основные причины семейных конфликтов их последствия и способы ра, Организация эксплуатации пожарной и аварийно-спасательной техник, ПОЖАРНАЯ И АВАРИЙНО-СПАСАТЕЛЬНАЯ ТЕХНИКА. Пожарные насосы на 05,, Проведение Аварийно-спасательных работ при дорожно -транспортных, ПОЖАРНАЯ И АВАРИЙНО-СПАСАТЕЛЬНАЯ ТЕХНИКА Организация эксплуатаци, опричнина причинвы и последствия данного явления.docx, Ликвидация аварийных разливов нефти в арктической зоне ВН-19-01


РЕФЕРАТИВНЫЙ ОБЗОР

Тема: «Последствия крупных аварий на АЭС»

Выполнил:

Проверила:

ОГЛАВЛЕНИЕ

Введение

Несмотря на все перспективы, которые несет за собой стремительное развитие атомной энергетики, не стоит забывать о последствиях, которые могут возникнуть при не соблюдении техники безопасности.

Если рассмотреть работу атомных электростанций по сравнению с обычными, тепловыми то, АЭС значительно отличается малым количеством вредных выбросов, что является более экологически чистым для атмосферы.

Уровень радиационного облучения организма человека в санитарно-защитной зоне вокруг АЭС и за её пределами ниже установленной нормы, так как наличие защитных барьеров колоссально уменьшают поступление радиоактивных элементов во внешнюю среду. Однако, атомные электростанции представляют серьезную, потенциальную опасность при возникновении нештатных ситуаций. Радиационное загрязнение при авариях на станциях данного типа несет за собой множество негативных последствий, как для здоровья и жизни людей, животных, так и для окружающей среды, находящихся на территории и в близи АЭС.

Несмотря на большое количество мер по обеспечению безопасности функционирования АЭС, невозможно полностью исключить возникновение аварийных ситуаций техногенного характера.

Первая атомная электростанция была построена в Советском Союзе в 1948 году, инициатором строительства был академик Курчатов Игорь Васильевич.

В настоящее время в различных странах функционирует около 192 АЭС с 438 энергоблоками. Из них в России работают 11 АЭС с 38 энергоблоками.

Глава 1. РАДИАЦИОННЫЕ АВАРИИ

    1. ОПРЕДЕЛЕНИЕ

Радиационные аварии – это аварии с выбросом (выходом) радиоактивных веществ (радионуклиидов – РВ), или ионизирующих излучений за границы, непредвиденные проектом для нормальной эксплуатации АЭС, в количествах выше установленных пределов их безопасной эксплуатации.

Производство, транспортировка и использование РВ четко регламентированы специальными правилами технологии, технической безопасности. Однако, при авариях на атомных реакторах могут быть повреждены элементы конструкций АЭС, технологические линии, возникнуть пожар, выброс РВ в окружающую среду, а также облучение людей.

Аварии на атомных электростанция классифицируются по нескольким признакам:

1. Исходя из связи с эксплуатацией радиационно-опасных объектов. Такие аварии могут быть проектные (последствия таких аварий прогнозируются заранее, поэтому при строительстве атомной станции предусмотрены все меры безопасности ее предупреждению и ликвидации последствий) запроектные (последствия таких аварий не прогнозируются и поэтому им свойственны тяжелые последствия).

2. В зависимости от зоны распространения различают трансграничные, федеральные, региональные, территориальные, региональные, местные и локальные аварии.

3. В соответствии международной шкалой событий аварии на атомных электростанциях

делятся на 8 уровней, в зависимости от степени опасности:

0 уровень – не представляет опасности;

1 уровень – незначительные опасности;

2 уровень – опасность средней степени;

3 уровень – серьезный уровень опасности;

4 уровень – авария, последствия которой не выходят за пределы территории атомной электростанции;

5 уровень – авария со значительным риском для окружающей среды за пределами территории атомной станции;

6 уровень – авария с тяжелыми последствиями;

7 уровень – авария с глобальными последствиями.

За последние десятилетия в мире в 14 странах произошли более 100 аварий на АЭС с выбросом РВ за границы реактора. Наиболее крупные по масштабам последствий – на АЭС в Виндскейле (1957г., Англия), “Три-Майл-Айленд” (1979г., США), Чернобыль (1986г., Украина).

    1. ПОРАЖАЮЩИЕ ФАКТОРЫ

Основными поражающими факторами ядерного взрыва на атомной электростанции являются световое излучение, электромагнитный импульс, проникающая радиация, радиоактивное заражение и ударная волна.

  • Световое излучение представляет собой поток энергии, который включает в себя инфракрасное, видимое и ультрафиолетовое излучения. В первые секунды яркость такого излучения больше, чем яркость на поверхности Солнца. Позже световое излучение переходит в тепловую, что способствует нагреву различных поверхностей. Этот процесс может привести к воспламенению некоторых материалов и обугливанию кожных покровов. В результате такого воздействия человек может получить ожоги разно степени тяжести, а также к потере зрения.
  • Электромагнитный импульс в первую очередь воздействует на электронную аппаратуру и выводит её из строя.
  • Проникающая радиация это невидимый поток гамма квантов и нейтронов. Когда такой поток проходит через живые клетки тела человека, то это приводит к нарушению нормального функционирования органов и жизненных систем, происходит разложение и отмирание клеток. Люди, которые поверглись такому излучению страдают лучевой болезнью.
  • Радиоактивное заражение людей из-за аварий на атомных электростанциях, становятся причиной возникновения у них лучевой болезни разной степени сложности. Процесс возникновения при радиоактивном заражении отличается от процесса заражения из-за проникающей радиации тем, что в первом случае оно происходит из-за попадания радиоактивных веществ во внутрь организма через органы дыхания.
  • Ударная волна является основным поражающим фактором ядерного взрыва на атомной электростанции. Отличие ударной волны от ядерного взрыва от волны обычного взрыва заключается в ее продолжительности и зоне поражения, которые намного больше. За 8 секунд такая волна проходит 3000 метров. Воздействия ударной волны ядерного взрыва может привести к сильным ушибам, переломам, полной потери слуха
    1. ДОЛГОСРОЧНЫЕ ПОСЛЕДСТВИЯ

Любой крупной аварии на атомных электростанциях свойственны радиологические последствия.

Радиологические последствия обусловлены влиянием излучений на организм человека.

Радиологические последствия могут быть ранние (не более месяца) и отдаленные (до одного года). Радиологическое последствия заключаются в процессе разрыва молекулярных связей, образование активных радикалов, изменение химического состава соединений в организме человека, нарушение генетической целостности клетки. В результате перечисленных процессов у человека (и любого живого организма) изменяется генетический код и происходят мутагенные изменения, которые способствуют образованию злокачественных опухолей, наследственных болезней и пороков развития.

Также последствия аварии на атомных электростанциях могут носить социальный, стрессорный и психофизиологический характер.

Помимо негативного воздействия на человека и другие живые организмы, также негативным последствиям подвергаются и другие элементы биосферы (атмосфера, гидросфера, почва и прочие). При аварии на атомных электростанциях вредными веществами загрязняется воздух, вода и почва на огромные расстояния, что может способствовать поражению людей, которые находились на безопасном расстоянии от взрыва.

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Характер и масштабы радиоактивного загрязнения местности при авариях на АЭС зависят от типа реактора, степени его разрушения, метеоусловий, рельефа местности и, главным образом, от характера взрыва (тепловой или ядерный). Возможны 2 варианта:

  • Первый (типа Чернобыльской), когда происходит тепловой взрыв с разрушением атомного реактора;
  • Второй, когда взрыв происходит вследствие взрывной ядерной реакции; в этом случае радиоактивное загрязнение окружающей среды будет таким же, как при наземном ядерном взрыве.

Облако радионуклидов, которое находится в воздухе в состоянии газа или аэрозоля, перемещается от места выброса в направлении и со скоростью среднего ветра, и постепенно оседает на поверхности

местности. На местности формируется след радиоактивного облака – зона радиоактивного загрязнения (ЗРЗ).

Характеристики зон радиоактивного заражения на местности существенно будут зависеть от характера взрыва.

В первом случае (тепловой взрыв) на местности возникнет зона радиоактивного загрязнения со значительными уровнями радиации. В ней можно выделить 4 зоны:

  1. я зона отчуждения – это территория, с которой проведена эвакуация населения в 1986г. (немедленно);
  2. я зона безусловного (обязательного) отселения,
  3. я зона – гарантированного (добровольного) отселения,
  4. я зона – усиленного радиоэкологического контороля.

Как пример разберем катастрофу на Чернобыльской АЭС. Серьёзные последствия связаны с аварией на ЧАЭС 1986г. По оценкам специалистов в период с 26 апреля по 6 мая из топлива высвободились все благородные газы, примерно 10-20% летучих радиоизотопов йода, цезия и теллура и 3-5% таких более стабильных радионуклидов, как барий, стронций, цезий, плутоний и др.

Длительный характер выбросов обусловил создание обширных зон радиоактивного загрязнения (РЗ), имеющих вид локальных пятен. Сформировались зоны внутри, которых были превышены допустимые уровни загрязнения по наиболее опасным радионуклидам плутонию- 239, стронцию-90 и цезию-137. В момент аварии и в последующий период в воздухе наибольшую опасность представлял йод-131.

Радиоактивному заражению подверглась обширная территория Украины – 3420 км2, Беларуси – 16520 км2, России – 8130 км2, всего – 28070 км2.

На этой территории дозу облучения выше допустимой (НРБ – 76/87) получили 150 тыс. человек, в том числе 60 тыс. детей. Острой лучевой болезни у них не установлено. Из 30-километровой зоны были эвакуированы 116 тыс. человек.

Другой вариант – авария с полным разрушением реактора и его ядерным взрывом – может иметь место вследствие стихийного бедствия, падения летательного аппарата на АЭС, действия взрывов обычных или ядерных боеприпасов в военное время или в результате диверсии.

При ядерном взрыве источником радиоактивного загрязнения являются:

Продукты деления урана-235, плутония-239;

Наведенная радиоактивность (за счет нейтронного облучения элементов внешней среды;

Не разделившаяся часть заряда ядерного устройства (т.е. уран и плутоний).

Радиоактивное заражение будет обусловлено, главным образом, осколками деления урана и плутония. При этом образуется около 200 радиоизотопов (элементов средней части таблицы Менделеева от цинка до гадолиния), имеющих различный период полураспада и различные физико-химические свойства.

По мере продвижения радиоактивного облака по ветру образуется зона радиоактивного загрязнения, представляющая собой вытянутый по направлению ветра загрязненный участок сигарообразной формы. Соответственно дозам до полного распада радиоактивных веществ территория радиоактивного следа делится на зоны:

умеренного загрязнения (зона А);

сильного загрязнения (зона Б);

опасного загрязнения (зона В);

чрезвычайно опасного загрязнения (зона Г);

Долгосрочные последствия аварий и катастроф на объектах с ядерной технологией, которые носят экологический характер оцениваются, главным образом, по величине радиационного ущерба, наносимого здоровью людей. Кроме того, важной количественной мерой этих последствий является степень ухудшения условий обитания и жизнедеятельности людей. Безусловно, уровень смертности и ухудшения здоровья людей имеет прямую связь с условиями обитания и жизнедеятельности, поэтому рассматриваются в комплексе с ними.

Последствия радиационных аварий обусловлены их поражающими факторами, к которым на объекте аварии относятся ионизирующее излучение как непосредственно при выбросе, так и при радиоактивном загрязнении территории объекта; ударная волна (при наличии взрыва при аварии); тепловое воздействие и воздействие продуктов сгорания (при наличии пожаров при аварии). Вне объекта аварии поражающим фактором является ионизирующее излучение вследствие радиоактивного загрязнения окружающей среды.

Любая крупная радиационная авария сопровождается двумя принципиально различающимися между собой видами возможных медицинских последствий:

  • – радиологическими последствиями, которые являются результатом непосредственного воздействия ионизирующего излучения;
  • – различными расстройствами здоровья (общими, или соматическими расстройствами), вызванными социальными, психологическими или стрессорными факторами, т. е. другими повреждающими факторами аварии нерадиационной природы.

Радиологические последствия (эффекты) различаются по времени их проявления: ранние (не более месяца после облучения) и отдаленные, возникающие по истечении длительного срока (годы) после радиационного воздействия. Последствия облучения организма человека заключаются в разрыве молекулярных связей; изменении химической структуры соединений, входящих в состав организма; образовании химически активных радикалов, обладающих высокой токсичностью; нарушении структуры генетического аппарата клетки. В результате изменяется наследственный код и происходят мутагенные изменения, приводящие к возникновению и развитию злокачественных новообразований, наследственных заболеваний, врожденных пороков развития детей и появлению мутаций в последующих поколениях. Они могут быть соматическими (от греч. soma — тело), когда эффект облучения возникает у облученного, и наследственными, если он проявляется у потомства. Наиболее чувствительны к радиационному воздействию кроветворные органы (костный мозг, селезенка, лимфатические узлы), эпителий слизистых оболочек (в частности, кишечника), щитовидная железа. В результате действия ионизирующих излучений возникают тяжелейшие заболевания: лучевая болезнь, злокачественные новообразования и лейкемии.

Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению. Основными специфическими явлениями и факторами, обусловливающими экологические последствия при радиационных авариях и катастрофах, служат радиоактивные излучения из зоны аварии, а также из формирующегося при аварии и распространяющегося в приземном слое облака (облаков) загрязненного радионуклидами воздуха; радиоактивное загрязнение компонентов окружающей среды.

Ершенко Н. Ю.

Проверил: профессор кафедры физики

Власова С. В.

Мурманск

2003

Содержание:

1. Введение. – стр. 3

2. Хронология крупнейших ядерных катастроф. – стр. 3

3. Хронология событий в день аварии

на Чернобыльской АЭС. – стр. 5

4. Анализ причин чернобыльской трагедии. – стр. 7

5. Последствия аварии. – стр. 10

6. Ликвидация последствий аварии. – стр. 11

7. Эвакуация населения. – стр. 13

8. Уроки на будущее. – стр. 16

1. Введение.

Днем рождения атомной промышленности можно считать 12 апреля 1943 г. когда было подписано постановление правительства о создании в Москве Лаборатории №2 АН СССР, впоследствии ставшей Институтом атомной энергии. Первая в мире атомная электростанция была построена и введена в эксплуатацию 27 июня 1954 года в городе Обнинске Калужской области.

Первая АЭС в Обнинске имела мощность 5МВт., но уже на начало 1989 года было построено 46 энергоблоков АЭС общей мощностью 35,4 ГВт. Вместе с тем, доля АЭС в общем объеме произведенной электроэнергии составила около 12%, что, однако, позволило СССР выйти по этому показателю на 3 место в мире.

2. Хронология крупнейших ядерных катастроф.

К началу 1986 г. в мире существовало 417 атомных реакторов и 120 ещё строилось. Вклад АЭС в выработку энергии в некоторых странах составил для Франции – 70%, Бельгии – 66%, Южной Кореи – 53%, Тайваня – 48,5%. Кроме ядерных реакторов было 326 исследовательских ядерных установок, реакторы установлены на ледоколах, спутниках, подводных лодках. Естественно, подобная огромная концентрация ядерного потенциала не могла не привести к возникновению нештатных ситуаций, тем более, что опыт эксплуатации объектов, использующих ядерное топливо, накапливался с годами, причём во многом при анализе этих самых аварийных ситуаций. Здесь можно привести много примеров чрезвычайных ситуаций, происходивших как у нас в стране, так и за рубежом.

Впервые человечество увидело атом в действии в 1945 г, когда США сбросили на Хиросиму и Нагасаки атомные бомбы. Погибла треть населения этих городов, радиация вызвала у многих людей лейкозы. Люди умирали и продолжают умирать до сих пор.

Ряд испытаний ядерного оружия Соединенными Штатами на острове Бикини в 1946-1958 гг. привели к тому, что в результате взрыва исчезли с лица земли 2 соседних островка, а сам остров стал непригоден для жизни.

В 1957 г. на заводе Селлафильд (Уиндскайл) в Англии по регенерации ядерного топлива произошел взрыв. В результате загрязнения погибли 13 человек, более 260 заболели острой и хронической лучевой болезнью.

В 1966 г. в Испании столкнулись 2 американских военных самолета с ракетами на борту. Одному пришлось сбросить 4 атомные бомбы. К счастью, взрыва не было, но в результате выбросов погибли посевы сельскохозяйственных культур, пришлось вывезти 1,5 тыс. т почвы для захоронения.

В 1979 г. на АЭС Тримайленд в г. Гаррисбург, Пенсильвания, также произошла крупная авария.

В Советском Союзе история подобных катастроф связана, главным образом с эксплуатацией производственного объединения «Маяк».

ПО «Маяк» было создано на базе промыш­ленного комплекса, построенного в 1945—1949 гг. Здесь в 1948 г. был пущен первый в стране промышленный атомный реактор, в 1949 г. — первый радиохимический завод, изготов­лены первые образцы атомного оружия. В настоящее время в производственную структуру ПО «Маяк» входят ряд произ­водств ядерного цикла, комплекс по захоронению высокоак­тивных материалов, хранилища и могильники РАО. Много­летняя деятельность ПО «Маяк» привела к накоплению ог­ромного количества радионуклидов и сильному загрязнению районов Челябинской, Свердловской, Курганской и Тюмен­ской областей. В результате сброса отходов радиохимического производства непосредственно в открытую речную систему Обского бассейна через р. Теча (1949—1951 гг.), а также вследствие аварий 1957 и 1967 гг. в окружающую среду было выброшено 23 млн. Ки активности. Радиоактивное загрязне­ние охватило территорию в 25 тыс. км2 с населением более 500 тыс. человек. Официальные данные о десятках поселков и деревень, подвергшихся загрязнению в результате сбросов ра­диоактивных отходов в р. Теча, появились только в 1993 г.

В 1957 г. в результате теплового взрыва емкости с РАО произошел мощный выброс радионуклидов (церий-144, цирконий-95, стронций-90, цезий-137 и др.) с суммарной активно­стью 2 млн. Ки. Возник «Восточно-Уральский радиоактивный след» длиной до 110 км (в результате последующей миграции даже до 400км) и шириной до 35—50 км. Общая площадь загрязненной территории, ограниченной изолинией 0,1 Ки/км2 по стронцию-90, составила 23 тыс. км2 . Около 10 тыс. человек из 19 населенных пунктов в зоне наиболее сильного загрязнения с большой задержкой были эвакуирова­ны и переселены.

Зона радиационного загрязнения на Южном Урале расши­рилась вследствие ветрового разноса радиоактивных аэрозолей с пересохшей части технологического водоема № 9 ПО «Маяк» (оз. Карачай) в 1967 г. В настоящее время в этом резервуаре на­ходится около 120 млн. Ки активности, преимущественно за счет стронция-90 и цезия-137. Под озером сформировалась линза загрязненных подземных вод объемом около 4 млн. м3 и площадью 10 км2 . Существует опасность проникновения загрязненных вод в другие водоносные горизонты и выноса радионуклидов в речную сеть.

По данным радиационного мониторинга, выпадения це­зия-137 из атмосферы в районах, расположенных в зоне влияния ПО «Маяк», в течение 1994г. были в 50—100 раз больше, чем в среднем по стране. Высоким остается и уро­вень загрязнения местности цезием-137 в пойме р. Теча. Кон­центрации стронция-90 в речной воде и в донных отложениях в 100—1000 раз превышают фоновые значения. В каскаде про­мышленных водоемов в верховьях Течи содержится 350 млн. м3 загрязненной воды, являющейся по сути низкоактивными от­ходами. Суммарная активность твердых и жидких РАО, нако­пленных в ходе деятельности ПО «Маяк», достигает 1 млрд. Ки. Сосредоточение огромного количества РАО, загрязнение по­верхностных водоемов, возможность проникновения загряз­ненных подземных вод в открытую гидрографическую систему Обского бассейна создают исключительно высокую степень радиационного риска на Южном Урале.

Но крупнейшей и самой страшной ядерной катастрофой за всю историю освоения человечеством энергии атомного деления является катастрофа на Чернобыльской АЭС в ночь с 25 на 26 апреля 1986 года.

Чернобыльская АЭС расположена в восточной части большого географического региона, именуемого белорусско-украинским Полесьем, на берегу реки Припяти, впадающей в Днепр, в 18 километрах от районного центра – города Чернобыля. Работы по сооружению станции были начаты в январе 1970 года.

3. Хронология событий в день аварии на Чернобыльской АЭС.

День 25 апреля 1986 года на 4-ом энергоблоке Чернобыльской атомной электростанции планировался как не совсем обычный. Предполагалось остановить реактор на планово-предупредительный ремонт. Но перед заглушением ядерной установки необходимо было провести ещё и некоторые эксперименты, которые наметило руководство ЧАЭС.

–> ЧИТАТЬ ПОЛНОСТЬЮ <–