Ядерные реакции реферат по физике

Обновлено: 04.05.2023

I. Ядерная физика – область физики, занимающаяся изучением структуры и свойств атомных ядер , ядерных превращений и элементарных частиц . Является научной основой ядерной техники , ядерной энергетики , ядерного оружия . Методы ядерной физики широко применяют в биологии , медицине , химии и других.

Ядерное оружие – оружие массового поражения взрывного действия , основанное на использовании внутриядерной энергии , выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза легких ядер – изотопов водорода . В результате выделения огромного количества энергии при взрыве поражающие факторы ядерного оружия существенно отличаются от действия боеприпасов в обычном снаряжении . Основные поражающие факторы ядерного оружия : ударная волна , световое излучение , проникающая радиация , радиоактивное заражение , электромагнитный импульс .

Впервые ядерное оружие применило США в 1945 году для ядерных бомбардировок японских городов Хиросимы и Нагасаки . Применение ядерного оружия чревато катастрофическими последствиями для всего человечества , поэтому я решил более подробно ознакомится с физикой ядер.

П. Что такое ядерная реакция. Первые исследования ядерных реакций

Ядерные реакции—это превращения атомных ядер при их взаимодействии между собой и с другими частицами, такими, как нейтроны, протоны, дейтроны, гамма-фотоны, многозарядные ионы и т. п. Под действием другого ядра или бомбардирующей частицы происходит изменение состава и строения исходного ядра, в результате чего в большинстве случаев получается новое ядро (конечное ядро реакции) и обычно еще какая-либо ядерная частица. Самопроизвольные превращения неустойчивых радиоактивных ядер, с которыми мы познакомились выше, не относятся к ядерным реакциям в их современном понимании.

В ядерных реакциях происходит либо выделение энергии и соответствующей массы, либо их поглощение. Энергию, которая выделяется в ядерных реакциях, называют ядерной.

По роду участвующих в ядерных реакциях бомбардирующих частиц различают:

а) реакции под действием заряженных частиц— альфа-частиц, протонов и т. д.;

б) реакции под действием нейтронов; в) реакции под действием гамма-фотонов.

Мы знаем, что ядерные силы, связывающие нуклоны ядра воедино, имеют огромную величину и в миллионы раз превышают силы, удерживающие электроны оболочки атома. Поэтому естественно, что для осуществления ядерных превращений требуются частицы с большой энергией. Единственным источником таких частиц, известным в начале XX столетия, были естественные радиоактивные изотопы, испускающие альфа-частицы. Их-то и использовал в качестве “ядерных снарядов” Э. Резерфорд, осуществивший в 1919 г. первую ядерную реакцию. Резерфорд выбрал для своих опытов быстрые альфа-частицы

с энергией 7,7 Мзв, испускаемые изотопом полония-214. В качестве мишени для обстрела были выбраны легкие элементы. Такой выбор объясняется тем, что альфа-частицы (ядра атомов гелия), как и всякие ядра, имеют положительный заряд. При приближении к обстреливаемому ядру, также положительно заряженному, альфа-частица испытывает действие силы электрического отталкивания тем больше, чем больше заряд ядра. Поэтому от тяжелых ядер альфа-частицы естественных радиоактивных изотопов отталкиваются, не проникая внутрь их. В легкие же ядра такие частицы могут проникать.

Первым веществом-мишенью, с которым Резерфорду удалось осуществить ядерную реакцию, был азот. Под действием альфа-частиц ядра азота превращались в ядра кислорода.

После длительных и напряженных исследований было установлено, что реакция протекает в два этапа еле дующим образом.

1. Альфа-частица (2Не 4 ) проникает внутрь ядра азота (7К 14 ) и поглощается им,
в результате чего образуется составное или промежуточное ядро типа

фтора (9Р ) в возбужденном состоянии, поскольку энергия альфа-частицы быстро распределяется между нуклонами ядра и как бы “подогревает” его. Проникновение альфа-частицы внутрь ядра азота и слияние с ним занимает по современным представлениям время порядка Ю- 21 сек (ядерная постоянная времени).

2. Через некоторое время порядка Ю- 14 сек (время жизни составного ядра)
‘составное ядро, испуская (как бы “испаряя”) протон ( <Н1), превращается в
устойчивое ядро изотопа кислорода с массовым числом 17 (80 ); большая
часть избыточной энергии составного ядра уносится протоном.

Вся эта реакция может быть записана следующим образом:

Индексы справа вверху означают, как обычно, массовые числа ядер, а цифры внизу—их атомные номера.

Атомный номер указывает число элементарных электрических зарядов в ядре. Согласно закону сохранения электрические заряды не создаются и не исчезают, а только перераспределяются. Поэтому сумма нижних цифр исходных продуктов (7+2=9) должна равняться сумме нижних цифр конечных продуктов реакции (8+1=9). Аналогично этому и суммы массовых чисел левой и правой частей уравнения также должны быть равны между собой (14 + 4 : 18 == 17 + 1). Этими правилами следует руководствоваться при написании уравнений ядерных реакций.

Превращение азота в кислород было первым примером искусственного превращения элементов. Резерфорд наблюдал превращения многих других элементов (бор, фтор, натрий, алюминий и др.) при бомбардировке их ядер альфа-частицами.

Таким образом, мечта средневековых алхимиков о получении золота и других драгоценных металлов из дешевых свинца, ртути и меди стала осуществляться.

Физики XX столетия, изучая свойства атомов и их ядер и овладевая ядерными реакциями, научились осуществлять подобные превращения. Например, в ядре атома ртути 80 протонов (2 = 80). Можно выбить один из них. Мы получим тогда ядро, содержащее 79 протонов (2=79). Это и будет ядро атома золота. Но только золото, добываемое подобным способом, обходится чрезвычайно дорого. Поэтому такой способ его производства пока не имеет практического применения.

Открытие нейтрона и искусственной радиоактивности

Идя по пути, проложенному Резерфордом, и применяя альфа-частицы естественных радиоактивных изотопов для бомбардировки различных веществ, удалось сделать еще два открытия, огромное значение которых невозможно переоценить.

Первым из этих открытий было открытие нейтрона, принадлежащее ученику
Резерфорда—английскому физику Д. Чвдвику; вторым открытие

искусственной радиоактивности французскими физиками Фредериком и Ирэн Жолио-Кюри.

История открытия нейтрона такова. В 1930 г. немецкие физики Боте и Беккер обнаружили, что бериллий (4Ве 9 ) при бомбардировке его альфа-частицами испускает лучи, обладающие огромной проникающей способностью. Из последнего следует, что эти лучи не обладают ионизирующим действием и, следовательно, являются электрически нейтральными. Поэтому исследователи предположили, что “бериллиевые лучи”, как их тогда называли, представляют собой гамма-лучи очень большой энергии.

Проникающая способность гамма-лучей сильно зависит, как мы знаем, от энергии их фотонов и может служить мерой последней. Произведя измерение проникающей способности “бериллиевых лучей”, Боте и Беккер определили энергию их фотонов. Она оказалась равной 7 Мэв.

Фредерик и Ирэн Жолио-Кюри обнаружили в своих опытах, что ионизирующее действие “бериллиевых лучей” сильно возрастает, если их пропустить через пластинку парафина, содержащего большое число атомов водорода. Было доказано, что этот эффект обусловлен тем, что “бериллиевые лучи” выбивают из парафина быстрые протоны, которые и производят сильную ионизацию. Из этих опытов можно было также определить энергию фотонов, принимая вслед за Боте и Беккером “бериллиевые лучи” за гамма-лучи. Подсчеты показали, что гамма-фотоны должны обладать энергией в 55 Мэв и более.

Как видим, измерение одной и той же величины, произведенное разными методами, дает совершенно’ различные результаты: 7 Мэв и 55 Мэв. Столь противоречивые результаты свидетельствовали об ошибочности исходного предположения, сделанного Боте и Беккером.

Объяснение наблюдаемым фактам дал в 1932 г. Д. Чадвик. Он показал, что все противоречия исчезают, если предположить, что “бериллиевые лучи” представляют собой поток нейтральных частиц с массой, близкой к массе протона, Эти частицы и были названы нейтронами. Опыты подтвердили эту гипотезу. Было

доказано, что при бомбардировке бериллия альфа-частицами происходит следующая ядерная реакция:

где оп!—символ нейтрона, заряд которого нуль, а массовое число равно единице.Открытие искусственной радиоактивности было сделано в результате опытов по бомбардировке альфа-частицами ядер алюминия, магния и бора, которые были проведены в 1933 г. Ф. и И. Жолио-Кюри. Окончательные выводы были опубликованы в январе 1934 г. Ученые обнаружили, что в ряде случаев бомбардируемое вещество дает излучение и после того, как источник альфа-частиц удален. Причем интенсивность этого излучения убывает с течением времени по экспоненциальному закону аналогично тому, как это происходит у естественно радиоактивных изотопов . Так, например, интенсивность излучения алюминия, подвергнутого бомбардировке альфа-частицами, уменьшалась вдвое через каждые 2,18 мин.

В результате исследования было установлено, что при бомбардировке стабильного изотопа алюминия 13 А1 27 происходит следующая ядерная реакция:

Возникающий в результате реакции радиоактивный изотоп фосфора 15Р 30 , отсутствующий в природе, распадается в последующее время с испусканием позитрона, пре вращаясь в устойчивый изотоп кремния 1431 :

где 43е°— символ позитрона, открытого незадолго до опытов Жолио-Кюри в космических лучах.

Период полураспада фосфора составляет 2,18 мин, максимальная энергия позитронов— около 3,5 Мэв. Жолио-Кюри обнаружили, что бор и магний также образуют радиоактивные изотопы соответственно азота 7К 13 и кремния 1451 27 , которые испускают позитроны.

Таким образом, Жолио-Кюри показали, что в результате бомбардировки альфа-частицами соответствующих мишеней могут возникать радиоактивные изотопы у таких элементов, ядра которых в природных условиях устойчивы (стабильны). Искусственно вызываемая радиоактивность получила название искусственной радиоактивности. Открытие ее было одним из крупнейших событий современного естествознания; оно указало пути искусственного получения радиоактивных изотопов и оказало’ огромное влияние на развитие всей науки и техники.

Фундаментальное открытие Ф. и И. Жолио-Кюри нового вида радиоактивности вызвало к жизни ряд замечательных работ в разных странах, что привело к открытию новых ядерных явлений первостепенного значения и к широкому

применению искусственной радиоактивности в самых разнообразных областях науки и техники.

В середине 1934 г. в Италии Э. Ферми и его сотрудники открыли, что эффективными возбудителями искусственной радиоактивности являются нейтроны. Например, при бомбардировке нейтронами стабильного изотопа ‘натрия 1Ша 23 возникает радиоактивный изотоп 1Ша 24 , который в последующем, испуская электрон и гамма-фотон у, превращается в стабильный изотоп магния 12М§ 24 . Процесс протекает по следующей схеме:

Поглощение нейтрона ядром натрия Ка ведет к образованию более тяжелого
изотопа Ка 24 того же химического элемента. Химические свойства обоих
изотопов одинаковы, а ядерные свойства существенно различны. Ядро Ка 23
стабильно (устойчиво), а ядро Ка 24 неустойчиво (радиоактивно) и, имея
лишний нейтрон, претерпевает бета-распад, испуская электрон и превращаясь
благодаря этому в устойчивый изотоп магния 12М§ 24 .

Ферми установил, что радиоактивные изотопы образуются в результате бомбардировки нейтронами не только у легких, но и у тяжелых элементов. При этом оказалось, что нейтроны, замедленные до скоростей теплового движения молекул (порядка километра в секунду), охотнее захватываются ядрами и, как следствие этого, эффективнее возбуждают искусственную радиоактивность.

Впоследствии выяснилось, что радиоактивные изотопы образуются также при бомбардировке стабильных изотопов быстрыми протонами, дейтронами и другими заряженными частицами.

Ядерная реакция – это процесс взаимодействия одного ядра с другим или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ -квантов.

Результатом ядерных реакций является образование новых радиоактивных изотопов, которые не существуют на Земле в естественных условиях.

Осуществление первой ядерной реакции пришлось на 1919 год. Э. Резерфорд обнаружил протоны в продуктах распада ядер. Он бомбардировал атомы азота α -частицами. Во время соударений частиц шла ядерная реакция, для которой подразумевалась специальная схема:

N 7 14 + He 2 4 → O 8 17 + H 1 1 .

В ее процессе выполняются законы сохранения импульса, энергии, момента импульса и заряда. Ядерные реакции характеризуются законом сохранения барионного заряда (количества нуклонов). Применимы и другие законы, используемые в ядерной физике и физике элементарных частиц.

Протекание ядерной реакции идет с помощью бомбардирования атомов быстрыми заряженными частицами (протонами, нейтронами, α -частицами, ионами). Изначально она была проведена с помощью протонов, содержащих большую энергию, полученных на ускорителе, еще в 1932 году:

Li 3 7 + H 1 1 → He 2 4 + He 2 4 .

Больше всего ученых заинтересовали реакции, протекающие при взаимодействии ядер с нейтронами. Беспрепятственный их проход в атомные ядра связан с отсутствием заряда. Физик Э. Ферми занимался изучением реакций, вызываемых нейтронами. Он выявил, что такие превращения могут быть вызваны медленными и быстрыми нейтронами, движущимися с тепловыми скоростями.

Они сопровождаются энергетическими превращениями.

Энергетический выход – это величина Q = M A + M B – M C – M D c 2 = ∆ M c 2 ,

где M A и M B подразумевают массы исходных продуктов реакции, а M C и M D массы конечных. Значение ∆ M называют дефектом масс.

Любые ядерные реакции протекают с выделением Q > 0 или поглощением Q 0 энергии. Последняя из них говорит о том, что первоначальная кинетическая энергия исходных продуктов не должна превышать величину Q , которая получила название порога реакции.

Чтобы у ядерной реакции был положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна равняться меньшему значению удельной энергии нуклонов конечных. Это значит, что ∆ M должно быть положительное.

Существуют два различных способа освобождения ядерной реакции: деление тяжелых ядер и термоядерные.

Деление тяжелых ядер

Данный способ освобождения ядерной реакции отличаются от радиоактивного распада ядер тем, что сопровождаются испусканием α – или β – частиц. Сама реакция – процесс деления нестабильного ядра на две крупные части сравнимых масс.

Ученые О. Ган и Ф. Штрассман в 1939 году открыли деление ядер урана. Продолжив исследования Ферми, они выявили, что бомбардирование урана нейтронами провоцирует появление элементов средней части периодической системы – радиоактивных изотопов бария Z = 56 , криптона
Z = 36 и других.

Уран можно встретить в виде двух изотопов U 92 238 ( 99 , 3 % ) и U 92 235 ( 0 , 7 % ) . Бомбардировка нейтронами ядра обоих изотопов расщепляет их на два осколка. Реакция деления U 92 235 происходит интенсивней на медленных (тепловых) нейтронах, а ядра U 92 238 вступают в реакцию только с быстрыми при наличии энергии, равной 1 М э В .

Большой интерес для ученых представляла реакция деления ядра U 92 235 . На данный момент существует около 100 различных изотопов с массовыми числами от 90 до 145 , которые возникают при его делении. Это можно изобразить в виде двух типичных реакций:

При делении ядра, инициированного нейтроном, появляются новые, которые вызывают реакции деления других ядер. Продуктами деления ядер урана- 235 являются другие изотопы бария, ксенона, стронция, рубидия и др.

Энергия, выделяемая при делении одного ядра урана, достигает 200 М э В . Оценка энергии производится с помощью удельной энергии связи нуклонов в ядре. Для ядер с массовым числом A ≈ 240 удельная энергия связи нуклонов в ядрах порядка 7 , 6 М э В / н у к л о н , а для ядер с массовыми числами А = 90 – 145 она составляет – 8 , 5 М э В / н у к л о н . Отсюда следует, что процесс деления способен освободить энергию около 0 , 9 М э В / н у к л о н , то есть 210 М э В на один атом урана. Энергия, выделяемая при полном делении всех ядер 1 г урана сравнима со сгоранием 3 т угля или 2 , 5 т нефти.

Нестабильность продуктов деления ядра выражается в содержании избыточного числа нейтронов. По отношению N Z наиболее тяжелые ядра составляют примерно 1 , 6 , при массовых числах от 90 до 145 отношение порядка 1 , 3 – 1 , 4 . Отсюда следует, что ядра-осколки испытывают последовательные β – распады, в результате которых число протонов возрастает, а число нейтронов уменьшается до тех пор, пока не образуется стабильное ядро.

Деление ядра урана- 235 вызвано столкновениями с нейтроном, после чего происходит освобождение еще двух или трех. При наличии благоприятных условий они попадают в другие ядра урана и вызывают их деления. Этот этап характеризуется нейронами в количестве 4 – 9 , которые далее вызывают его распад.

Лавинообразный процесс деления получил название цепной реакции.

На рисунке 6 . 8 . 1 представлена подробная схема такой реакции при делении ядер урана.

Рисунок 6 . 8 . 1 . Схема развития цепной реакции.

Чтобы такая реакция была осуществима, следует учитывать значение коэффициента размножения нейтронов, который должен быть больше 1 . Иначе говоря, каждое последующее поколение нейтронов должно быть больше, чем предыдущее. Коэффициент размножения определяется не только количеством образующихся нейтронов, но и условиями протекания самой реакции, так как их часть может поглощаться другими ядрами или выходить из зоны реакции.

Освободившиеся при делении ядер урана- 235 нейтроны могут вызывать дальнейшее деление, но только ядер данного урана, количество которого в природном уране всего 0 , 7 % .

Изотоп U 92 238 способен поглощать нейтроны, но цепной реакции это не вызовет. Ее возникновение возможно при повышенном содержании урана- 235 в самом уране, то есть при превышении критической массы. Небольшие куски урана имеют большинство нейтронов, которые при реакции не попали в ядра, в результате чего вылетают наружу.

Критическая масса для урана- 235 составляет 50 к г . Ее уменьшение производится с помощью замедлителей нейтронов. При распаде урана появляющиеся нейтроны обладают высокими скоростями, а вероятность захвата медленных нейтронов ядрами урана- 235 в сотни раз больше, чем быстрых. Лучшим замедлителем считается тяжелая вода D 2 O . Ее получают при взаимодействии чистой воды с нейтронами.

Графит также считается хорошим аналогом, но его ядра не поглощают нейтроны. При упругом взаимодействии с ядрами дейтерия или углерода они замедляются до значений тепловых скоростей.

Для снижения критической массы до 250 г актуально применение замедлителей нейтронов и специальной оболочки из бериллия, которая способна отражать их.

Атомные бомбы – это характерный пример цепной неуправляемой ядерной реакции, в результате которой происходит реактивное соединение двух кусков урана- 235 , каждый из которых обладает массой ниже критической.

Устройство, поддерживаемое управляемой реакцией деления ядер, называют ядерным (атомным) реактором.

На рисунке 6 . 8 . 2 изображена схема ядерного реактора на медленных нейтронах.

Рисунок 6 . 8 . 2 . Схема устройства ядерного реактора на медленных нейтронах.

Протекание ядерной реакции характерно для активной зоны реактора, которая заполнена замедлителем и пронизана стержнями с обогащенной смесью изотопов урана с повышенным содержанием урана- 235 (до 3 % ). Стрежни с кадмием или бором, поглощающие нейтроны, вводят в активную зону. Этот процесс позволяет контролировать скорость цепной реакции.

Охлаждение активной зоны производится с помощью прокачиваемого теплоносителя в качестве воды или металла с низкой температурой плавления (натрий). Передача тепловой энергии воде производится теплоносителем, находящимся в парогенераторе. Вода принимает состояние пара с высоким давлением, который направляется в турбину, соединенную с электрогенератором, после чего вода попадает в конденсатор. Отсутствие утечки радиации обусловлено работой теплоносителя I и парогенератора II по замкнутым циклам.

Турбина атомной электростанции используется в качестве тепловой машины, которая определяет по второму закону термодинамики общую эффективность станций. Современные атомные электростанции имеют КПД= 1 3 . Чтобы произвести 1000 М В т электрической мощности, необходимо достичь значения 3000 М В т тепловой мощности в реакторе. Около 2000 М В т уносятся с водой, которая охлаждает конденсатор. Это может привести к локальному перегреву естественных водоемов, то есть появлению экологических проблем.

Основной трудностью работы таких станций является обеспечение полной радиационной безопасности находящихся на ней людей и предотвращения случайных выбросов радиоактивных веществ, которые накапливаются в активной зоне реактора. Данной проблеме уделяется особое внимание. После произошедших аварий на АЭС в Пенсильвании в 1979 году и в Чернобыле в 1986 году вопрос безопасности становится особенно необходимым.

Практический интерес вызывают реакторы, которые способны работать без замедлителя на быстрых нейтронах. Они содержат ядерное горючее, содержащее не менее 15 % изотопа υ 92 235 . Преимущество таких реакторов состоит в том, что, работая, ядра урана- 238 способны поглощать нейтроны при помощи двух последовательных β -распадов, которые превращаются в ядра плутония, используемые как ядерное топливо:

Деление тяжелых ядер

Коэффициент воспроизводства таких реакторов достигает значений 1 , 5 , то есть на получение 1 , 5 к г плутония приходится 1 к г урана- 235 . Обычные реакторы также образуют плутоний, но в меньших количествах.

В США первый ядерный реактор был построен в 1942 году под руководством Э. Ферми, а в нашей стране в 1946 году с И.В. Курчатовым.

Термоядерные реакции

Еще один путь для освобождения ядерной энергии связан с реакциями синтеза. Слияние легких ядер и образование нового сопровождаются выделением большого количества энергии. На рисунке 6 . 6 . 1 показана зависимость удельной энергии от массового числа А в виде кривой. Даже ядра с массовым числом 60 характеризуются увеличением энергии нуклонов с ростом А . Отсюда получаем, что синтез любого ядра с A 60 из более легких ядер идет с выделением энергии. Общая масса продуктов реакции синтеза меньше массы первоначальных частиц.

Реакция слияния ядер получила название термоядерных, так как их протекание возможно только при высоких температурах.

Для вступления двух ядер в реакцию синтеза необходимо сблизить их на расстояние ядерных сил порядка 2 · 10 – 15 м , преодолев электрическое отталкивание их положительных зарядов. Для выполнения этого условия нужно, чтобы средняя кинетическая энергия теплового движения молекул превосходила потенциальную энергию кулоновского взаимодействия. Получение необходимой температуры Т дает величину 10 8 – 10 9 К . Она слишком высокая.

Температура 10 8 – 10 9 К указывает на нахождение вещества в ионизированном состоянии, то есть плазмы.

Энергия, выделяемая при термоядерных реакциях, в расчете на 1 н у к л о н в несколько раз превышает удельную энергию, которая выходит при цепной реакции деления ядер, показанная на примере формулы. То есть при реакции слияния ядер дейтерия и трития

H 1 2 + H 1 3 → H e 2 4 + n 0 1 + 17 , 6 выдает 3 , 5 М э в / к у л о н . Полное выделение энергии составляет 17 , 6 М э В . Ее считают наиболее перспективной термоядерной реакцией.

Возможность осуществления управляемых термоядерных реакций дает человеку новый и экологически чистый источник практически неисчерпаемой энергии. Но для получения сверхвысоких температур и удержания плазмы, нагретой до миллиарда градусов, требуется решение труднейшей научно-технической задачи для осуществления термоядерного синтеза.

Данный этап развития науки характеризуется наличием неуправляемой реакции синтеза в водородной бомбе. Достижение высокой температуры, необходимой для ядерного синтеза, производится путем взрыва урановой или плутониевой бомбы.

Роль термоядерных реакций важна в эволюции Вселенной. Энергия изучения Солнца и звезд характеризуется термоядерным происхождением. Примером служит ядерная реакция горения гелия, изображенная ниже.

Рисунок 6 . 8 . 3 . Возраст 10 7 лет.

Внутреннее строение звезды с массой 5 M ⊙ как функция возраста. Заштрихованы области протекания ядерных реакций. Конвективные зоны отмечены точками.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Реферат

на тему: Элементы ядерной физики

1.1 Строение атомов, ядер

Как известно, все в мире состоит из молекул, которые представляют собой сложные комплексы взаимодействующих атомов. Молекулы – это наименьшие частицы вещества, сохраняющие его свойства. В состав молекул входят атомы различных химических элементов.

Химические элементы состоят из атомов одного типа. Атом, мельчайшая частица химического элемента, состоит из “тяжелого” ядра и вращающихся вокруг электронов.

Кликните мышкой в картину, чтобы посмотреть анимированную версию.
Кликните мышкой в картину, чтобы посмотреть анимированную версию.

Ядра атомов образованы совокупностью положительно заряженных протонов и нейтральных нейтронов. Эти частицы, называемые нуклонами, удерживаются в ядрах короткодействующими силами притяжения, возникающими за счет обменов мезонами, частицами меньшей массы.

Ядро элемента X обозначают как или X-A, например уран U-235 – ,

где Z – заряд ядра, равный числу протонов, определяющий атомный номер ядра, A – массовое число ядра, равное суммарному числу протонов и нейтронов.

Ядра элементов с одинаковым числом протонов, но разным числом нейтронов называются изотопами (например, уран имеет два изотопа U-235 и U-238); ядра при N=const, z=var – изобарами.

1.2 Ядерные реакции

Ядра водорода, протоны, а также нейтроны, электроны (бета-частицы) и одиночные ядра гелия (называемые альфа-частицами), могут существовать автономно вне ядерных структур. Такие ядра или иначе элементарные частицы, двигаясь в пространстве и приближаясь к ядрам на расстояния порядка поперечных размеров ядер, могут взаимодействовать с ядрами, как говорят участвовать в реакции. При этом частицы могут захватываться ядрами, либо после столкновения – менять направление движения, отдавать ядру часть кинетической энергии. Такие акты взаимодействия называются ядерными реакциями. Реакция без проникновения внуть ядра называется упругим рассеянием.

После захвата частицы составное ядро находится в возбужденном состоянии. “Освободиться” от возбуждения ядро может несколькими способами – испустить какую-либо другую частицу и гамма-квант, либо разделиться на две неравные части. Соответственно конечным результатам различают реакции – захвата, неупругого рассеяния, деления, ядерного превращения с испусканием протона или альфа-частицы.

Дополнительная энергия, освобождаемая при ядерных превращениях, часто имеет вид потоков гамма-квантов.

Вероятность реакции характеризуется величиной “поперечного сечения” реакции данного типа

1.3 Радиоактивность

Радиоактивность вошла в сознание человечества всего лишь примерно 100 лет тому назад. Лишь в 1986 году А. Бекерель обнаружил некие х-лучи, засвечивавшие фотопластинки. Затем было установлено, что радиоактивность – это свойство испускать потоки заряженных aльфа, бета и нейтральных гамма частиц. Усилиями многих ученых было обнаружено,что aльфа-частицы представляют собой ядра гелия, бета-частицы – электроны, а гамма-частицы – поток квантов света. Было установлено, что многие вещества являются естественными излучателями частиц, из которых некоторые, как например радий, оказались очень интенсивными источниками радиации.

Различные комбинации нуклонов в ядрах управляются законами ядерных взаимодействий, взаимное положение и движения внутри ядер определяется действием короткодействующих ядерных сил. Известно,что существует некоторая зависимость между числом протонов и нейтронов в ядрах, в рамках которой реализуется стабильность ядер. Эта зависимость для устойчивых ядер имеет вид:

Различные виды радиоактивных превращений можно описать:

,
где X * – составное ядро, A=A 1 +A 2 , Z=Z 1 +Z 2 , E – выделенная энергия.

Дочерние продукты радиоактивных процессов могут также претерпевать распад – так возникают цепочки радиоактивных превращений. Важной разновидностью радиоактивных превращений является т.н. спонтанное деление тяжелых ядер, открытое Флеровым и Петржаком в 1942 году. Радиоактивный распад это процесс статистический, т.е. управляемый вероятностными законамиi. Однако, в среднем, за времена большие времен характерных внутренних процессов – это вполне детерминированное явление. Так, можно записать уравнение радиоактивного распада, имеющее вид

где А i – число ядер изотопа А i в единице обьема,
– константа радиоактивного распада изотопа А i .

Величина определяет другую, часто используемую характеристику радиоактивного распада изотопов – период полураспада T1/2:

время в течение которого количество вещества за счет радиоактивного распада уменьшается в два раза.

Интенсивность радиоактивного распада измеряется в единицах, называемых “беккерель” (1 Бк = 1 распад / 1 сек). Важная единица интенсивного радиоактивного распада – кюри (1 кюри = 3,7*10 10 Бк = 37 ГБк)

1.4 Деление ядер

Кликните мышкой в картину, чтобы посмотреть анимированную версию.

Ядра тяжелых элементов – урана, плутония и некоторых других интенсивно поглощают тепловые нейтроны. После акта захвата нейтрона, тяжелое ядро с вероятностью ~0,8 делится на две неравные по массе части, называемые осколками или продуктами деления. При этом испускаются – быстрые нейтроны/ (в среднем около 2,5 нейтронов на каждый акт деления), отрицательно заряженные бета-частиц и нейтральные гамма-кванты, а энергия связи частиц в ядре преобразуется в кинетическую энергию осколков деления, нейтронов и других частиц. Эта энергия затем расходуется на тепловое возбуждение составляющих вещество атомов и молекул, т.е. на разогревание окружающего вещества.

После акта деления ядер рожденные при делении осколки ядер, будучи нестабильными, претерпевают ряд последовательных радиоактивных превращений и с некоторым запаздыванием испускают “запаздывающие” нейтроны, большое число альфа, бета и гамма-частиц. С другой стороны некоторые осколки обладают способностью интенсивно поглощать нейтроны.

Дифференциальное уравнение превращений осколков деления можно записать в виде:

где Ai – число ядер изотопа i в единице объема ,
Q(t) – число актов деления в единице объема в единицу времени в момент t,
– выход изотопов Ai в акте деления,
– константа радиоактивного распада изотопа Ai,
– плотность потока нейтронов,
– сечение поглощения нейтронов ядрами изотопа Ai ,
– константа перехода к-того изотопа в i-тый.

Для решения этой системы уравнений нужно задать начальные условия, знать схемы и константы всех радиоактивных переходов. Суммируя по группам изотопов, имеющих тот или иной тип радиоактивности, можно определить интенсивность радиоактивного распада в функции времени. В [3] представлены детали и результаты таких расчетов.

Наиболее значимые осколки деления – Kr, Cs, I, Xe, Ce, Zr и др.

В Таблице 1 [ ] даны некоторые характеристики осколков деления

Таблица 1. Характеристики некоторых радионуклидов и продуктов деления урана-235

Для многих задач определенный интерес представляют данные об активности топливных элементов после некоторой выдержки их вне реактора.

Для нас важно отметить сейчас, что осколки деления обладают значительной радиационной способностью. Так 1 грамм осколков деления обладает активностью ~0,3 кюри. Эта активность медленно уменьшается по закону

E=2,66*t -1,2 MeV/дел.сек, где t – время в сек.

2 Элементы нейтронной физики

2.1 Ядерный реактор

Ядерный реактор – это техническая установка, в которой осуществляется самоподдерживающаяся цепная реакция деления тяжелых ядер с освобождением ядерной энергии. Ядерный реактор состоит из активной зоны и отражателя, размещенных в защитном корпусе.Активная зона содержит ядерное топливо в виде топливной композиции в защитном покрытии и замедлитель. Топливные элементы обычно имеют вид тонких стержней. Они собраны в пучки и заключены в чехлы. Такие сборные композиции называются сборками или кассетами.

Вдоль топливных элементов двигается теплоноситель, который воспринимает тепло ядерных превращений. Нагретый в активной зоне теплоноситель двигается по контуру циркуляции за счет работы насосов либо под действием сил Архимеда и, проходя через теплообменник, либо парогенератор, отдает тепло теплоносителю внешнего контура. Перенос тепла и движения его носителей можно представить в виде простой схемы:

2.2 Размножение нейтронов

Размножение нейтронов является основой самоподдерживающейся цепной реакции деления ядер.

Цикл размножения нейтронов начинается с акта захвата нейтрона ядром тяжелых (U-235, Pu-239 и других “делящихся”) элементов. Интенсивность захватов, т.е. число актов захватов нейтронов в единице объема в единицу времени есть

где n – плотность нейтронов,
v – их скорость,
– плотность ядер поглотителя,
– вероятность поглощения нейтрона, т.н. сечение поглощения . Индекс c означает “capture”, т.е. захват.
Величина nv= – называется потоком нейтронов,
– макроскопическим сечением поглощения.

При каждом акте деления ядер тяжелых “делящихся” элементов испускается 2-3 новых, “быстрых” нейтронов. Это число обозначают vf. Пересчитывая на один акт захвата нейтрона, это число следует умножить на вероятность деления относительно деления и радиационного захвата, т.е. отношение и . Произведение обозначают vc.

Это число вторичных быстрых нейтронов на один акт захвата нейтрона ураном-235, равно примерно 2. Учитывая что топливо реакторов содержит большую долю неделящегося изотопа урана-238, число новых нейтронов на один акт захвата в уране топлива составляет

Число новых нейтронов, родившихся в единице объема топлива в единицу времени есть

Эти нейтроны сталкиваясь с ядрами окружающего топлива могут произвести дополнительные акты деления ядер топлива, произвести как говорят “размножение на быстрых нейтронах”. Это умножение поколения нейтронов обозначают буквой . Далее нейтроны, сталкиваясь с ядрами замедлителя,теплоносителя и конструктивных элементов теряют свою энергию, “замедляются”. При этом некоторая их доля поглощается (без деления) на резонансах сечения поглощения тяжелых элементов и выбывает из игры, а некоторая диффундирует во внешнее пространство и тем самым также теряется.

Долю нейтронов “избежавших резонансный захват” обозначают через , а долю избежавших “утечку”при замедлении – через . Тогда число “замедлившихся” нейтронов в единицу времени в единице объема, ставших “тепловыми”, т.е. потерявших свою энергию рождения (~ 2 Мev) есть

где – геометрический параметр, – “возраст” нейтронов.

Эти нейтроны, “дифундируя” в среде, могут потеряться за счет утечки и поглощения в материалах активной зоны. Долю нейтронов, избежавших утечку при диффузии в тепловой области энергии (~kT ev) обозначают через , а долю нейтронов поглощенных в тяжелых элементах относительно полного поглощения во всех материалах активной зоны через . Число нейтронов прошедших весь нейтронный цикл на один нейтрон, поглощенный в тяжелых элементах, т.е. прошедших цикл размножения, замедления, диффузии в тепловой области есть

Произведение называют коэффициентом размножения нейтронов в бесконечной среде – k “бесконечное”, а – эффективным коэффициентом размножения нейтронов в конечной среде, k – “эффективное”.

Реактивность

Реактор называется критическим, если число новых нейтронов при каждом акте их захвата ядрами урана, избежавших резонансный захват в уране-238 и утечку из реактора при замедлении и диффузии, точно равно числу поглощенных. Это состояние cоответствует равенству k eff =1 Величина 1-k eff /k eff =r называется реактивностью . Эта величина определяет темп разгона реактора при r>0 .

3 Литература

“Ядерная физика”,
пер. с англ., Москва, изд. “Иностранная литература”, 1951 г.

“Ядерная физика”,
Москва, Атомиздат, 1975 г.

А.С. Герасимов, Т.С. Зарицкая, А.П. Рудик

“Справочник по образованию нуклидов в ядерных реакторах”,
Москва, Энергоатомиздат, 1989 г.

В.Д. Сидоренко, В.М. Колобашкин, П.М. Рубцов, П.А. Ружанский

“Радиационные характеристики облученного ядерного топлива”,
справочник, Москва, Энергоатомиздат, 1983 г.

ядерная реакция

Расщепление ядра атома и способность использовать ядерную энергию, как в созидательных (атомная энергетика), так и разрушительных (атомная бомба) целях стало, пожалуй, одним из самых значимых изобретений прошлого ХХ века. Ну а в основе всей той грозной силы, что таиться в недрах крохотного атома лежат ядерные реакции.

Определение

Под ядерными реакциями в физике понимается процесс взаимодействия атомного ядра с другим подобным ему ядром либо разными элементарными частичками, в результате чего происходит изменения состава и структуры ядра.

Немного истории

Первая ядерная реакция в истории была сделана великим ученым Резерфордом в далеком 1919 году во время опытов по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота альфа частицами, и при соударении частиц происходила ядерная реакция.

А так выглядело уравнение этой ядерной реакции. Именно Резерфорду принадлежит заслуга открытия ядерных реакций.

Затем последовали многочисленные опыты ученых по осуществлению различных типов ядерных реакций, например, весьма интересной и значимой для науки была ядерная реакция, вызванная бомбардировкой атомных ядер нейтронами, которую провел выдающийся итальянский физик Э. Ферми. В частности Ферми обнаружил, что ядерные преобразования могут быть вызваны не только быстрыми нейтронами, но и медленными, который двигаются с тепловыми скоростями. К слову ядерные реакции, вызванные воздействием температуры, получили название термоядерных. Что же касается ядерных реакций под действием нейтронов, то они очень быстро получили свое развитие в науке, да еще какое, об этом читайте дальше.

Типичная формула ядерной реакции.

формула ядерной реакции

Какие ядерные реакции есть в физике

В целом известные на сегодняшний день ядерные реакции можно разделить на:

  • деление атомных ядер
  • термоядерные реакции

Ниже детально напишем о каждой из них.

Деление атомных ядер

атомный взрыв в Хиросиме

Но вернемся к физике, ядерная реакция урана при расщеплении его ядра обладает просто таки колоссальной энергией, которую наука смогла поставить себе на службу. Как же происходит подобная ядерная реакция? Как мы написали выше, она происходит вследствие бомбардировки ядра атома урана нейтронами, от чего ядро раскалывается, при этом возникает огромная кинетическая энергия, порядка 200 МэВ. Но что самое интересное, в качестве продукта ядерной реакции деления ядра урана от столкновения с нейтроном, возникает несколько свободных новых нейтронов, которые, в свою очередь, сталкиваются с новыми ядрами, раскалывают их, и так далее. В результате нейтронов становится еще больше и еще больше ядер урана раскалывается от столкновений с ними – возникает самая настоящая цепная ядерная реакция.

цепная ядерная реакция

Вот так она выглядит на схеме.

При этом коэффициент размножения нейтронов должен быть больше единицы, это необходимое условие ядерной реакции подобного вида. Иными словами, в каждом последующем поколении нейтронов, образованных после распада ядер, их должно быть больше, нежели в предыдущем.

Стоит заметить, что по похожему принципу ядерные реакции при бомбардировке могут проходить и во время деления ядер атомов некоторых других элементов, с теми нюансами, что ядра могут бомбардироваться самыми разными элементарными частичками, да и продукты таких ядерных реакций будут разниться, чтобы описать их более детально, нужна целая научная монография

Термоядерные реакции

В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

Термоядерные реакции, как это следует из самого из названия (термо – температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на Солнце происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

Видео

И в завершение образовательное видео по теме нашей статьи, ядерным реакциям.

Читайте также:

      

  • Сестринское дело в памятниках литературы и искусства реферат
  •   

  • Асқын өткізгіштік құбылысы реферат
  •   

  • Методические рекомендации по написанию рефератов по истории
  •   

  • Положение об организации реферат
  •   

  • В подземелье алхимика реферат

  • 1
  • 2
  • 3
  • . . .
  • последняя »

назад (Назад)скачать (Cкачать работу)

Функция “чтения” служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Реферат

Тема:

“Ядерные реакции. Ядерная энергетика”

Выполнил: ученик 11в класса средней школы №160 г. Санкт-Петербурга

Дунаев Иван

2000г.

Содержание1. КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ 3 1.1. Введение. 3 1.2. Атомное ядро. 3 1.3. Альфа-распад. 3 1.4. Бета-распад. 3 1.5. Гамма-распад. 4 1.6. Ядерные реакторы. 4 1.7. Заключение. 52. ВВЕДЕНИЕ 53.АТОМНОЕ ЯДРО 54. ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР 65. РАДИОАКТИВНОСТЬ 7 5.1. Общие сведения. 7 5.2. Влияние радиации на человека 75.2.1. Радиоактивность атмосферы. 75.2.1.1. Естественная радиоактивность атмосферы. 75.2.1.2. Искусственная радиоактивность атмосферы. 85.2.2. Радиоактивность вод. 85.2.3. Радиоактивность горных пород. 9 4.3 Альфа-распад. 9 4.4 Бета-распад. 9 4.5 Позитронный бета-распад. 10 4.6 Электронный захват. 10 4.7 Гамма-распад. 105 ДЕЛЕНИЕ АТОМНЫХ ЯДЕР 11 5.3 Общие сведения. 11 5.4 Продукты деления. 116 ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С АТОМНЫМИ ЯДРАМИ 127 ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ 13 7.3 Ядерные реакторы. 138 ТЕХНИЧЕСКИЕ ОСНОВЫ ЯДЕРНОЙ ЭНЕРГЕТИКИ 14 8.3 Особенности ядерного реактора как источника теплоты. 14 8.4 Устройство энергетических ядерных реакторов. 15 8.5 Требования к конструкциям активной зоны и ее характеристики. 16 8.6 Классификация реакторов. 189 Заключение. 2210 Литература 22

1.КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ 1.1.Введение.

Энергетика – важнейшая отрасль народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Это основа экономики государства.

В мире идет процесс индустриализации, который требует дополнительного расхода материалов, что увеличивает энергозатраты. С ростом населения увеличиваются энергозатраты на обработку почвы, уборку урожая, производство удобрений и т.д.

В настоящее время многие природные легкодоступные ресурсы планеты исчерпываются. Добывать сырье приходится на большой глубине или на морских шельфах. Ограниченные мировые запасы нефти и газа, казалось бы, ставят человечество перед перспективой энергетического кризиса. Однако использование ядерной энергии дает человечеству возможность избежать этого, так как результаты фундаментальных исследований физики атомного ядра позволяют отвести угрозу энергетического кризиса путем использования энергии, выделяемой при некоторых реакциях атомных ядер.

1.2.Атомное ядро.

Атомное ядро характеризуется зарядом Ze, массой М, спином J, магнитным и электрическим квадрупольным моментом Q, определенным радиусом R, изотопическим спином Т и состоит из нуклонов – протонов и нейтронов. Все атомные ядра разделяются на стабильные и нестабильные. Свойства стабильных ядер остаются неизменными неограниченно долго. Нестабильные же ядра испытывают различного рода превращения.

Явление радиоактивности, или спонтанного распада ядер, была открыта французским физиком А. Беккерелем в 1896 г. Он обнаружил, что уран и его соединения испускают лучи или частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку, Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий

  • 1
  • 2
  • 3
  • . . .
  • последняя »

Интересная статья: Быстрое написание курсовой работы

Определение 1

Ядерная реакция – это процесс взаимодействия одного ядра с другим или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов.

Результатом ядерных реакций является образование новых радиоактивных изотопов, которые не существуют на Земле в естественных условиях.

Осуществление первой ядерной реакции пришлось на 1919 год. Э. Резерфорд обнаружил протоны в продуктах распада ядер. Он бомбардировал атомы азота α-частицами. Во время соударений частиц шла ядерная реакция, для которой подразумевалась специальная схема:

N714+He24→O817+H11.

В ее процессе выполняются законы сохранения импульса, энергии, момента импульса и заряда. Ядерные реакции характеризуются законом сохранения барионного заряда (количества нуклонов). Применимы и другие законы, используемые в ядерной физике и физике элементарных частиц.

Протекание ядерной реакции идет с помощью бомбардирования атомов быстрыми заряженными частицами (протонами, нейтронами, α-частицами, ионами). Изначально она была проведена с помощью протонов, содержащих большую энергию, полученных на ускорителе, еще в 1932 году:

Li37+H11→He24+He24.

Больше всего ученых заинтересовали реакции, протекающие при взаимодействии ядер с нейтронами. Беспрепятственный их проход в атомные ядра связан с отсутствием заряда. Физик Э. Ферми занимался изучением реакций, вызываемых нейтронами. Он выявил, что такие превращения могут быть вызваны медленными и быстрыми нейтронами, движущимися с тепловыми скоростями.

Они сопровождаются энергетическими превращениями.

Определение 2

Энергетический выход – это величина Q=MA+MB-MC-MDc2=∆Mc2,

где MA и MB подразумевают массы исходных продуктов реакции, а MC и MD массы конечных. Значение ∆M называют дефектом масс.

Определение 3

Любые ядерные реакции протекают с выделением Q>0 или поглощением Q<0 энергии. Последняя из них говорит о том, что первоначальная кинетическая энергия исходных продуктов не должна превышать величину Q, которая получила название порога реакции.

Чтобы у ядерной реакции был положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна равняться меньшему значению удельной энергии нуклонов конечных. Это значит, что ∆M должно быть положительное.

Существуют два различных способа освобождения ядерной реакции: деление тяжелых ядер и термоядерные.

Деление тяжелых ядер

Данный способ освобождения ядерной реакции отличаются от радиоактивного распада ядер тем, что сопровождаются испусканием α- или β- частиц. Сама реакция – процесс деления нестабильного ядра на две крупные части сравнимых масс.

Ученые О. Ган и Ф. Штрассман в 1939 году открыли деление ядер урана. Продолжив исследования Ферми, они выявили, что бомбардирование урана нейтронами провоцирует появление элементов средней части периодической системы – радиоактивных изотопов бария Z=56, криптона
Z=36 и других.

Уран можно встретить в виде двух изотопов U92238 (99,3 %) и U92235 (0,7 %). Бомбардировка нейтронами ядра обоих изотопов расщепляет их на два осколка. Реакция деления U92235 происходит интенсивней на медленных (тепловых) нейтронах, а ядра U92238 вступают в реакцию только с быстрыми при наличии энергии, равной 1 МэВ.

Большой интерес для ученых представляла реакция деления ядра U92235. На данный момент существует около 100 различных изотопов с массовыми числами от 90 до 145, которые возникают при его делении. Это можно изобразить в виде двух типичных реакций:

Деление тяжелых ядер

При делении ядра, инициированного нейтроном, появляются новые, которые вызывают реакции деления других ядер. Продуктами деления ядер урана-235 являются другие изотопы бария, ксенона, стронция, рубидия и др.

Энергия, выделяемая при делении одного ядра урана, достигает 200 МэВ. Оценка энергии производится с помощью удельной энергии связи нуклонов в ядре. Для ядер с массовым числом A≈240 удельная энергия связи нуклонов в ядрах порядка 7,6 МэВ/нуклон, а для ядер с массовыми числами А=90-145 она составляет – 8,5 МэВ/нуклон. Отсюда следует, что процесс деления способен освободить энергию около 0,9 МэВ/нуклон, то есть 210 МэВ на один атом урана. Энергия, выделяемая при полном делении всех ядер 1 г урана сравнима со сгоранием 3 т угля или 2,5 т нефти.

Нестабильность продуктов деления ядра выражается в содержании избыточного числа нейтронов. По отношению NZ наиболее тяжелые ядра составляют примерно 1,6, при массовых числах от 90 до 145 отношение порядка 1,3–1,4. Отсюда следует, что ядра-осколки испытывают последовательные β- распады, в результате которых число протонов возрастает, а число нейтронов уменьшается до тех пор, пока не образуется стабильное ядро.

Деление ядра урана-235 вызвано столкновениями с нейтроном, после чего происходит освобождение еще двух или трех. При наличии благоприятных условий они попадают в другие ядра урана и вызывают их деления. Этот этап характеризуется нейронами в количестве 4-9, которые далее вызывают его распад.

Определение 4

Лавинообразный процесс деления получил название цепной реакции.

На рисунке 6.8.1 представлена подробная схема такой реакции при делении ядер урана.

Деление тяжелых ядер

Рисунок 6.8.1. Схема развития цепной реакции.

Чтобы такая реакция была осуществима, следует учитывать значение коэффициента размножения нейтронов, который должен быть больше 1. Иначе говоря, каждое последующее поколение нейтронов должно быть больше, чем предыдущее. Коэффициент размножения определяется не только количеством образующихся нейтронов, но и условиями протекания самой реакции, так как их часть может поглощаться другими ядрами или выходить из зоны реакции.

Освободившиеся при делении ядер урана-235 нейтроны могут вызывать дальнейшее деление, но только ядер данного урана, количество которого в природном уране всего 0,7%.

Изотоп U92238 способен поглощать нейтроны, но цепной реакции это не вызовет. Ее возникновение возможно при повышенном содержании урана-235 в самом уране, то есть при превышении критической массы. Небольшие куски урана имеют большинство нейтронов, которые при реакции не попали в ядра, в результате чего вылетают наружу.

Критическая масса для урана-235 составляет 50 кг. Ее уменьшение производится с помощью замедлителей нейтронов. При распаде урана появляющиеся нейтроны обладают высокими скоростями, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых. Лучшим замедлителем считается тяжелая вода D2O. Ее получают при взаимодействии чистой воды с нейтронами.

Графит также считается хорошим аналогом, но его ядра не поглощают нейтроны. При упругом взаимодействии с ядрами дейтерия или углерода они замедляются до значений тепловых скоростей.

Для снижения критической массы до 250 г актуально применение замедлителей нейтронов и специальной оболочки из бериллия, которая способна отражать их.

Определение 5

Атомные бомбы – это характерный пример цепной неуправляемой ядерной реакции, в результате которой происходит реактивное соединение двух кусков урана-235, каждый из которых обладает массой ниже критической.

Определение 6

Устройство, поддерживаемое управляемой реакцией деления ядер, называют ядерным (атомным) реактором.

На рисунке 6.8.2 изображена схема ядерного реактора на медленных нейтронах.

Деление тяжелых ядер

Рисунок 6.8.2. Схема устройства ядерного реактора на медленных нейтронах.

Протекание ядерной реакции характерно для активной зоны реактора, которая заполнена замедлителем и пронизана стержнями с обогащенной смесью изотопов урана с повышенным содержанием урана-235 (до 3%). Стрежни с кадмием или бором, поглощающие нейтроны, вводят в активную зону. Этот процесс позволяет контролировать скорость цепной реакции.

Охлаждение активной зоны производится с помощью прокачиваемого теплоносителя в качестве воды или металла с низкой температурой плавления (натрий). Передача тепловой энергии воде производится теплоносителем, находящимся в парогенераторе. Вода принимает состояние пара с высоким давлением, который направляется в турбину, соединенную с электрогенератором, после чего вода попадает в конденсатор. Отсутствие утечки радиации обусловлено работой теплоносителя I и парогенератора II по замкнутым циклам.

Турбина атомной электростанции используется в качестве тепловой машины, которая определяет по второму закону термодинамики общую эффективность станций. Современные атомные электростанции имеют КПД= 13. Чтобы произвести 1000 МВт электрической мощности, необходимо достичь значения 3000 МВт тепловой мощности в реакторе. Около 2000 МВт уносятся с водой, которая охлаждает конденсатор. Это может привести к локальному перегреву естественных водоемов, то есть появлению экологических проблем.

Основной трудностью работы таких станций является обеспечение полной радиационной безопасности находящихся на ней людей и предотвращения случайных выбросов радиоактивных веществ, которые накапливаются в активной зоне реактора. Данной проблеме уделяется особое внимание. После произошедших аварий на АЭС в Пенсильвании в 1979 году и в Чернобыле в 1986 году вопрос безопасности становится особенно необходимым.

Практический интерес вызывают реакторы, которые способны работать без замедлителя на быстрых нейтронах. Они содержат ядерное горючее, содержащее не менее 15% изотопа υ92235. Преимущество таких реакторов состоит в том, что, работая, ядра урана-238 способны поглощать нейтроны при помощи двух последовательных β-распадов, которые превращаются в ядра плутония, используемые как ядерное топливо:

Деление тяжелых ядер

Коэффициент воспроизводства таких реакторов достигает значений 1,5, то есть на получение 1,5 кг плутония приходится 1 кг урана-235. Обычные реакторы также образуют плутоний, но в меньших количествах.

В США первый ядерный реактор был построен в 1942 году под руководством Э. Ферми, а в нашей стране в 1946 году с И.В. Курчатовым.

Термоядерные реакции

Еще один путь для освобождения ядерной энергии связан с реакциями синтеза. Слияние легких ядер и образование нового сопровождаются выделением большого количества энергии. На рисунке 6.6.1 показана зависимость удельной энергии от массового числа А в виде кривой. Даже ядра с массовым числом 60 характеризуются увеличением энергии нуклонов с ростом А. Отсюда получаем, что синтез любого ядра с A<60 из более легких ядер идет с выделением энергии. Общая масса продуктов реакции синтеза меньше массы первоначальных частиц.

Определение 7

Реакция слияния ядер получила название термоядерных, так как их протекание возможно только при высоких температурах.

Для вступления двух ядер в реакцию синтеза необходимо сблизить их на расстояние ядерных сил порядка 2·10-15 м, преодолев электрическое отталкивание их положительных зарядов. Для выполнения этого условия нужно, чтобы средняя кинетическая энергия теплового движения молекул превосходила потенциальную энергию кулоновского взаимодействия. Получение необходимой температуры Т дает величину 108-109 К. Она слишком высокая.

Определение 8

Температура 108-109 К указывает на нахождение вещества в ионизированном состоянии, то есть плазмы.

Энергия, выделяемая при термоядерных реакциях, в расчете на 1 нуклон в несколько раз превышает удельную энергию, которая выходит при цепной реакции деления ядер, показанная на примере формулы. То есть при реакции слияния ядер дейтерия и трития

H12+H13→He24+n01+17,6 выдает 3,5 Мэв/кулон. Полное выделение энергии составляет 17, 6 МэВ. Ее считают наиболее перспективной термоядерной реакцией.

Возможность осуществления управляемых термоядерных реакций дает человеку новый и экологически чистый источник практически неисчерпаемой энергии. Но для получения сверхвысоких температур и удержания плазмы, нагретой до миллиарда градусов, требуется решение труднейшей научно-технической задачи для осуществления термоядерного синтеза.

Данный этап развития науки характеризуется наличием неуправляемой реакции синтеза в водородной бомбе. Достижение высокой температуры, необходимой для ядерного синтеза, производится путем взрыва урановой или плутониевой бомбы.

Пример 1

Роль термоядерных реакций важна в эволюции Вселенной. Энергия изучения Солнца и звезд характеризуется термоядерным происхождением. Примером служит ядерная реакция горения гелия, изображенная ниже.

Термоядерные реакции

Рисунок 6.8.3. Возраст 107 лет.

Внутреннее строение звезды с массой 5M ⊙ как функция возраста. Заштрихованы области протекания ядерных реакций. Конвективные зоны отмечены точками.

Термоядерные реакции

Рисунок 6.8.4. Модель ядерного реактора.

Термоядерные реакции

Рисунок 6.8.5. Модель синтеза гелия.

Термоядерные реакции

Рисунок 6.8.6. Модель ядерных превращений.

Муниципальное бюджетное общеобразовательное учреждение

Средняя общеобразовательная школа № 14

Имени Героя Советского Союза

Анатолия Перфильева

г. Александров

                                         Исследовательская работа по физике

«Ядерные реакции»

Выполнили

ученицы

9В класса:

Рачек Мария,

Румянцева Виктория,

Есман Виталия

учитель

Романова О.Г.

2015

                                                            План проекта

Введение

Теоретическая часть

  • История атома и радиоактивности. Строение атома.
  • Деление урана. Цепная реакция.
  • Ядерный реактор. Ядерная реакция. Преобразование внутренней энергии атомных ядер в электрическую энергию.
  • Атомная энергетика.
  • Применение ядерных двигателей в современности.
  • Биологическое действие радиации.

Заключение

Список используемой литературы

Введение

Актуальность:

Одной из важнейших проблем, стоящих перед человечеством, является энергетическая проблема. Потребление энергии растёт столь быстро, что известные в настоящее время запасы топлива окажутся исчерпанными в сравнительно короткое время. Проблему «энергетического голода» не решает и использование энергии так называемых возобновляемых источников (энергии рек, ветра, солнца, морских волн, глубинного тепла Земли), так как они могут обеспечить в лучшем случае только 5-10% наших потребностей. В связи с этим в середине XX века возникла необходимость поиска новых источников энергии.

        В настоящее время реальный вклад в энергоснабжение вносит ядерная энергетика, а именно, атомные электростанции (сокращённо АЭС). Поэтому мы решили выяснить, полезны ли человечеству АЭС.

Цели работы: 

  1. Выяснить условия протекания ядерных реакций.
  2. Выяснить принципы работы АЭС, а также узнать, хорошее или плохое влияние он оказывает на окружающую среду и на человека.

В рамках достижения цели нами были поставлены следующие задачи:

  1. Узнать строение атома, его состав, что такое радиоактивность.
  2. Исследовать атом урана. Исследовать ядерную реакцию.
  3. Исследовать принцип работы ядерных двигателей.

Методы исследования:

  1. Теоретическая часть – чтение литературы о ядерных реакциях.

Теоретическая часть.

История атома и радиоактивности. Строение атома.

        Предположение о том, что все тела состоят из мельчайших частиц, было высказано древнегреческими философами Левкиппом и Демокритом примерно 2500 тысячи лет назад. Эти частицы получили названия «атом», что означает «неделимые». Атом – это мельчайшая частица вещества, простейшая, не имеющая составных частей.

        Но примерно с середины XIX века стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру и что в их состав входят электрически заряженные частицы.

        Наиболее ярким свидетельством сложного строения атома явилось открытие явления радиоактивности, сделанное французским физиком Анри Беккерелем в 1896 году. Он обнаружил, что химический элемент уран самопроизвольно (т.е. без внешних взаимодействий) излучает ранее неизвестные невидимые лучи, которые позже были названы радиоактивным излучением. Поскольку радиоактивное излучение обладало необычными свойствами, многие учёные занялись его исследованием. Оказалось, что не только уран, но и некоторые другие химические элементы (например, радий) тоже самопроизвольно испускают радиоактивные лучи. Способность атомов некоторых химических элементов к самопроизвольному излучению стали называть радиоактивностью (от лат. radio – излучаю и activus – действенный).

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом. В конце февраля 1896 года на заседании Французской академии наук он сделал сообщение о рентгеновском излучении фосфоресцирующих веществ. Через некоторое время в лаборатории Беккереля была случайно проявлена пластинка, на которой лежала урановая соль, не облучённая солнечным светом. Она, естественно, не фосфоресцировала, но отпечаток на пластинке получился. Тогда Беккерель стал испытывать разные соединения и минералы урана (в том числе не проявляющие фосфоресценции), а также металлический уран. Пластинка неизменно засвечивалась. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Своим открытием Беккерель делится с учёными, с которыми он сотрудничал. В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий. Они выяснили, что свойством естественной радиоактивности обладают все соединения урана и в наибольшей степени сам уран. Беккерель же вернулся к интересующим его люминофорам. Правда, он сделал ещё одно крупное открытие, относящееся к радиоактивности. Однажды для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и положил пробирку в жилетный карман. Прочтя лекцию, он вернул радиоактивный препарат владельцам, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказал об этом Пьеру Кюри, и тот поставил на себе опыт: в течение десяти часов носил привязанную к предплечью пробирку с радием. Через несколько дней у него тоже появилось покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.

        В 1899 году в результате опыта, проведённого под руководством английского физика Эрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. имеет сложный состав. В середине расположен поток (излучение), не имеющее электрического заряда, а по бокам выстраивались 2 потока заряженных частиц. Положительно заряженные частицы назвали альфа-частицами, представляющими собой полностью ионизированные атомы гелия, а отрицательно заряженные – бета-частицы, представляющие собой элетроны. Нейтральные получили название гамма-частицы или гамма-кванты. Гамма-излучение, как выяснилось позже, представляет собой один из диапазонов электромагнитного излучения.

        Поскольку было известно, что атом в целом нейтрален, явление радиоактивности позволило учёным создать примерную модель атома. Первым, кто это сделал, был английский физик Джозеф Джон Томсон, создавший одну из первых моделей атома в 1903 году. Модель представляла собой шар, по всему объёму которого был равномерно распределён положительный заряд. Внутри шара находились электроны, каждый их которых мог совершать колебательные движения около своего положения равновесия. Модель напоминала по форме и строению кекс с изюмом. Положительный заряд равен по модулю суммарному отрицательному заряду электронов, поэтому заряд атома в целом равен нулю.

        Модель строения атома Томсона нуждалась в экспериментальной проверке, которой занялся в 1911 году Резерфорд. Он провёл опыты и пришёл к выводу, что модель атома представляет собой шар, в центре которого расположено положительно заряженное ядро, занимающее малый объём от всего атома. Вокруг ядра движутся электроны, масса которых значительно меньше. Атом электрически нейтрален, поскольку заряд ядра равен модулю суммарному заряда электронов. Резерфорд также установил, что ядро атома имеет диаметр примерно  10-14 – 10-15 м, т.е. оно в сотни тысяч раз меньше атома. Именно ядро претерпевает изменение при радиоактивных превращениях, т.е. радиоактивность – это способность некоторых атомных ядер самопроизвольно превращаться в другие ядра с испусканием частиц. Чтобы зарегистрировать (увидеть) частицы, в 1908 году немецкий физик Ганс Гейгер изобрёл так называемый счётчик Гейгера.

Позже положительно заряженные частицы в атоме получили название протонов, а отрицательные – нейтронов. Протоны и нейтроны получили общее название нуклоны.

Деление урана. Цепная реакция.

        Деление ядер урана при его бомбардировке нейтронами было открыто в 1939 году немецкими учёными Отто Ганом и Фрицем Штрассманом.

Рассмотрим механизм этого явления. Поглотив лишний нейтрон, ядро приходит в действие и деформируется, приобретая вытянутую форму.

В ядре действует 2 вида сил: электростатические силы отталкивания между протонами, стремящиеся разорвать ядро, и ядерные силы притяжения между всеми нуклонами, благодаря которым ядро не распадается. Но ядерные силы короткодействующие, поэтому в вытянутом ядре они уже не могут удержать сильно удалённые друг от друга части ядра. Под действием электростатических сил ядро разрывается на две части, которые разлетаются в разные стороны с огромной скоростью и излучают 2-3 нейтрона. Часть внутренней энергии переходит в кинетическую. Осколки ядра быстро тормозят в окружающей среде, в результате чего их кинетическая энергия переходит во внутреннюю энергию среды. При одновременном делении большого количества ядер урана внутренняя энергия окружающей уран среды и соответственно её температура возрастают. Таким образом, реакция деления ядер урана идёт с выделением энергии в окружающую среду. Энергия колоссальна. При полном делении всех ядер, имеющихся в 1 г урана, выделяется столько энергии, сколько выделится при сгорании 2,5 т нефти. Для преобразования внутренней энергии атомных ядер в электрическую используют цепные реакции деления ядер, основанные на том, что 2-3 нейтрона, выделившиеся при делении первого ядра, могут принять участие в делении других ядер, которые их захватят. Для поддержания непрерывности цепной реакции важно учитывать массу урана. Если масса урана слишком мала, то нейтроны вылетают за его пределы, не встречая на своём пути ядро. Цепная реакция прекращается. Чем больше масса куска урана, тем больше его размеры и тем длиннее путь, который проходят в нём нейтроны. Вероятность встречи нейтронов с ядрами атомов возрастает. Соответственно увеличивается число делений ядер и число излучаемых нейтронов. Число появившихся после деления ядер нейтронов равно числу потерянных нейтронов, поэтому реакция может продолжаться длительное время. Чтобы реакция не прекращалась, нужно брать массу урана определённого значения – критическую. Если масса урана больше критической, то в результате резкого увеличения свободных нейтронов цепная реакция приводит к взрыву.

Ядерный реактор. Ядерная реакция. Преобразование внутренней энергии атомных ядер в электрическую энергию.

Ядерный реактор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор, названный СР-1, построен в декабре 1942 года в США под руководством Э. Ферми. В настоящее время, по данным МАГАТЭ, в мире насчитывается 441 реактор в 30 странах. Также ведётся строительство ещё 44 реакторов.

В ядерном реакторе в качестве делящегося вещества используется в основном уран-235. Такой реактор называется реактором на медленных нейтронах. Замедлителем нейтронов могут выступать разные вещества:

  1. Вода. Достоинства обычной воды как замедлителя — её доступность и дешевизна. Недостатками воды являются низкая температура кипения (100 °C при давлении 1 атм) и поглощение тепловых нейтронов. Первый недостаток устраняется повышением давления в первом контуре. Поглощение тепловых нейтронов водой компенсируют применением ядерного топлива на основе обогащённого урана.
  2. Тяжёлая вода. Тяжёлая вода по своим химическим и теплофизическим свойствам мало отличается от обычной воды. Она практически не поглощает нейтронов, что даёт возможность использовать в качестве ядерного топлива природный уран в реакторах с тяжеловодным замедлителем. Недостатком тяжёлой воды является её высокая стоимость.
  3. Графит. Реакторный графит получают искусственно из смеси нефтяного кокса и каменноугольной смолы. Сначала из смеси прессуют блоки, а затем эти блоки термически обрабатывают при высокой температуре. Графит имеет плотность 1,6—1,8 г/см3. Он сублимирует при температуре 3800—3900 °C. Нагретый в воздухе до 400 °C графит загорается. Поэтому в энергетических реакторах он содержится в атмосфере инертного газа (гелий, азот).
  4. Бериллий. Один из лучших замедлителей. Он имеет высокую температуру плавления (1282 °C) и теплопроводность, совместим с углекислым газом, водой, воздухом и некоторыми жидкими металлами. Однако, в пороговой реакции возникает гелий, поэтому при интенсивном облучении быстрыми нейтронами внутри бериллия накапливается газ, под давлением которого бериллий распухает. Применение бериллия ограничено также его высокой стоимостью. Кроме того, бериллий и его соединения весьма токсичны. Из бериллия изготавливают отражатели и вытеснители воды в активной зоне исследовательских реакторов.

Части реактора на медленных нейтронах: в активной зоне расположено ядерное топливо в виде урановых стержней и замедлитель нейтронов (например, вода), отражатель (слой вещества, который окружает активную зону) и защитная оболочка из бетона. Для управления реакцией служат регулирующие стержни, эффективно поглощающие нейтроны. Для запуска реактора их постепенно выводят из активной зоны. Образующиеся в процессе этой реакции нейтроны и осколки ядер, разлетаясь с большой скоростью, попадают в воду, сталкиваются с ядрами атомов водорода и кислорода, отдают им часть своей кинетической энергии. Вода при этом нагревается, а замедленные нейтроны через какое-то время опять попадают в урановые стержни и участвуют в делении ядер. Активная зона с помощью труб соединяется с теплообменником, образуя первый замкнутый контур. Насосы обеспечивают в нём циркуляцию воды. Нагретая вода проходит через теплообменник, нагревает воду в змеевике второго контура и превращает её в пар. Таким образом, вода в активной зоне служит не только замедлителем нейтронов, но и теплоносителем, отводящим тепло. После энергия пара в змеевике преобразуется в электрическую энергию. Посредством пара вращается турбина, которая приводит в движение ротор генератора электрического тока. Отработанные пар поступает в конденсатор и превращается в воду. Затем весь цикл повторяется.

Ядерный двигатель использует энергию деления или синтеза ядер для создания реактивной тяги. Традиционный ЯД в целом представляет собой конструкцию из ядерного реактора и собственно двигателя. Рабочее тело (чаще – аммиак или водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу.

Атомная энергетика.

Атомная энергетика –  область техники, основанная на использовании реакции деления атомных ядер для выработки теплоты и производства электроэнергии. Ядерный сектор энергетики наиболее значителен во Франции, Бельгии, Финляндии, Швеции, Болгарии и Швейцарии, т.е. в тех промышленно развитых странах, где недостаточно природных энергоресурсов. Эти страны производят от четверти до половины своей электроэнергии на АЭС.

        Первый европейский реактор был создан в 1946 году в Советском Союзе под руководством Игоря Васильевича Курчатова. В 1954 году в Обнинске была введена в действие первая АЭС. Преимущества АЭС:

  1. Главное преимущество — практическая независимость от источников топлива из-за небольшого объёма используемого топлива. В России это особенно важно в европейской части, так как доставка угля из Сибири слишком дорога. Эксплуатация АЭС обходится значительно дешевле, чем ТЭС. Правда, строительство ТЭС дешевле, чем строительство АЭС.
  2. Огромным преимуществом АЭС является её относительная экологическая чистота. На ТЭС суммарные годовые выбросы вредных веществ составляют  примерно 13 000 т в год на газовых и 165 000 т на пылеугольных ТЭС. Подобные выбросы на АЭС полностью отсутствуют. ТЭС потребляет 8 миллионов т кислорода в год для окисления топлива, АЭС же не потребляют кислорода вообще. Кроме того, больший удельный выброс радиоактивных веществ даёт угольная станция. В угле всегда содержатся природные радиоактивные вещества, при сжигании угля они практически полностью попадают во внешнюю среду. Большинство радионуклидов с ТЭС долгоживущие. Большая часть радионуклидов с АЭС довольно быстро распадается, превращаясь в нерадиоактивные.
  3. Для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на пылеугольных и тем более газомазутных ТЭС. Особенно заметно преимущество АЭС в стоимости производимой электроэнергии во время так называемых энергетических кризисов, начавшихся с начала 70-х годов. Падение цен на нефть автоматически снижает конкурентоспособность АЭС.

Применение ядерных двигателей в современности.

        По мере развития ядерной физики все отчетливее вырисовывалась перспектива создания атомных энергетических установок. Первый практический шаг в этом направлении сделал Советский Союз, где в 1954г. была построена атомная электростанция.

В 1959г. под флагом СССР вступило в строй первое в мире атомное судно — ледокол «Ленин», который успешно проводил караваны торговых судов в тяжелых условиях Заполярья.

В последние годы XIX века заступили на арктическую вахту мощные советские атомные ледоколы «Арктика» и «Сибирь»…

Особенно большие возможности атомная энергетика открыла для подводных лодок, позволив решить две наиболее актуальные проблемы — увеличения подводной скорости и увеличения длительности плавания под водой без всплытия. Ведь самые совершенные дизель-электрические подводные лодки не могут развить под водой более 18—20 уз, да и эту скорость поддерживают лишь около часа, после чего вынуждены всплывать для зарядки аккумуляторных батарей.

В таких условиях по указанию ЦК КПСС и Советского правительства в нашей стране в кратчайший срок был создан атомный подводный флот. Советские подводные атомоходы неоднократно пересекали Северный Ледовитый океан подо льдами, всплывали в районе Северного полюса. В канун XXIII съезда КПСС группа атомных подводных лодок совершила кругосветное плавание, пройдя около 22 тыс. миль под водой без всплытия…

Основным отличием атомной подводной лодки от паросиловой является замена парового котла реактором, в котором осуществляется регулируемая цепная реакция деления атомов ядерного топлива с выделением тепла, используемого для получения пара в парогенераторе.

Атомная установка создала для подводных лодок реальную перспективу не только сравняться в скорости с надводными кораблями, но и превзойти их. Как мы знаем, в погруженном состоянии подводная лодка не испытывает волнового сопротивления, на преодоление которого быстроходные надводные водоизмещающие корабли затрачивают большую часть мощности энергетической установки.

Биологическое действие радиации.

        Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут “запустить” не до конца еще изученную цепь событий, приводящих к раку или генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма. Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения, — как правило, не ранее чем через одно-два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению проявляются лишь в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению.

        В зависимости от вида излучений, дозы облучения и его условий возможны различные виды лучевого поражения. Это острая лучевая болезнь (ОЛБ) – от внешнего облучения, ОЛБ – от внутреннего облучения, хроническая лучевая болезнь, различные клинические формы с преимущественно локальным поражением отдельных органов, которые могут характеризоваться острым, подострым или хроническим течением; это отдаленные последствия, среди которых наиболее существенно возникновение злокачественных опухолей; дегенеративные и дистрофические процессы (катаракта, стерильность, cклеротические изменения). Сюда же относят генетические последствия, наблюдаемые у потомков облученных родителей. Вызывающие их развитие ионизирующие излучения, благодаря высокой проникающей способности воздействуют на ткани, клетки, внутриклеточные структуры, молекулы и атомы в любой точке организма.

Живые существа на воздействие излучений реагируют различно, причем развитие лучевых реакций во многом зависит от дозы излучений. Поэтому целесообразно различать: 1) воздействие малых доз, примерно до 10 рад; 2) воздействие средних доз, обычно применяемых с терапевтическими целями, которые граничат своим верхним пределом с воздействием высоких доз. При воздействии излучении различают реакции, возникающие немедленно, ранние реакции, а также поздние (отдаленные) проявления. Конечный результат облучения часто во многом зависит от мощности дозы, различных условий облучения и особенно от природы излучений. Это относится также к области применения излучений в клинической практике с лечебными целями.

Радиация по-разному действует на людей в зависимости от пола и возраста, состояния организма, его иммунной системы и т. п., но особенно сильно – на младенцев, детей и подростков.

        Рак – наиболее серьезное из всех последствий облучения человека при малых дозах. Обширные обследования, охватившие 100000 человек, переживших атомные бомбардировки Хиросимы и Нагасаки, показали, что пока рак является единственной причиной повышенной смертности в этой группе населения.

Заключение.

        Проведя исследование, мы выяснили, что ядерное топливо и ядерные двигатели приносят огромную пользу человеку. Благодаря ним человек нашёл дешёвые источники тепла и энергии (одна АЭС заменяет человеку несколько десятков, а то и сотен обычных ТЭС), смог попасть через льды на Северный Полюс и опуститься на дно океана. Но всё это работает только тогда, когда правильно применяется, т.е. в нужном количестве и только в мирных целях. Немало было зарегистрировано случаев взрывов АЭС (Чернобыль, Фукусима) и взрывы атомных бомб (Хиросима  и Нагасаки).

Но от последствий радиоактивных отходов никто не защищён. Многие люди страдают от лучевых болезней и рака, вызванных радиоактивным излучением. Но мы думаем, что через несколько лет учёные придумают методы утилизации радиоактивных отходов без вреда для здоровья и изобретут лекарства от всех этих болезней.

Список используемой литературы.

  1. А. В. Пёрышкин, Е. М. Гутник. «Учебник по физике для 9 класса».
  2. Г. Кесслер. «Ядерная энергетика».
  3. Р. Г. Перельман. «Ядерные двигатели».
  4. Э. Резерфорд. «Избранные научные труды. Строение атома и искусственное превращение».
  5. https://ru.wikipedia.org

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

ОГЛАВЛЕНИЕ

Введение.

1. Физика атомного ядра. Структура атомных ядер. Ядерные силы.

2. Энергия связи ядер. Дефект массы. Ядерные силы. Ядерные реакции.

 3. Закон радиоактивного распада

4. Измерение радиоактивности и радиационная защита

Заключение.

Список использованной литературы.

Введение.

Атомная физика возникла на рубеже 19-20 вв. на основе исследований оптических спектров. Она занималась изучением строения атома и изучением его свойств. Была разработана количественная теория атома. Последующие исследования свойств атомов и электронов завершились созданием квантовой механики — физической теории, описывающей законы микромира. Квантовая механика является теоретическим фундаментом атомной физики, а она в свою очередь выступает опытным полигоном. Атомной физикой установлены оптические спектры атомов различных химических элементов, связь закономерностей спектров с системой энергетических уровней, подтвердила то, что внутренняя энергия атома квантуется и изменяется дискретно. Вследствие изучения радиоактивности произошло выделение ядерной физики, изучающей взаимопревращение элементарных частиц — физика элементарных частиц. Атомная физика добилась огромных успехов в изучении процессов, происходящих в атомных ядрах и взаимопревращение элементарных частиц. Но эта дисциплина изучает ту часть, в которой не происходит изменение с самим ядром, а только с электронной оболочкой. Ядерная физика изучает превращения атомных ядер, происходящие как в результате радиоактивных распадов, так и в результате различных ядерных реакций. Достижения ядерной физики немыслимы без использования достижений физики и техники ускорителей заряженных частиц. Именно создание различных ускорителей элементарных частиц помогли исследователям во многих проблемах изучения атомных ядер и их превращений. Важной частью ядерной физики является нейтронная физика, занимающаяся ядерными реакциями, происходящими под действием нейтронов. Современная ядерная физика распадается на две взаимосвязанные ветви — теоретическую и экспериментальную ядерную физику. Теоретическая работает с моделями атомных ядер и ядерных реакций. Экспериментальная ядерная физика использует богатый арсенал современных исследовательских средств, включая ядерные реакторы (как источники мощных пучков нейтронов), ускорители заряженных частиц (как источник ускоренных электронов, протонов, ионов, мезонов и т.д.), разнообразные детекторы частиц. Ядерно-физические исследования имеют огромное чисто научное значение, позволяя глубже проникать в тайны природы. В то же время эти исследования важны и для практического использования в ядерной энергетике, медицине, в ядерных реакторах на ледоколах, для изучения ядерных реакций для использования в мирных целях, для синтеза материалов. Наша работа также посвящена ядерным реакциям, радиоактивности и способам защиты от результатов ядерных реакций.

1. Физика атомного ядра. Структура атомных ядер. Ядерные силы.

Характер связанной системы микрообъекта, как и любой системы, зависит не только от состава и строения ее элементов, но и от их взаимодействия. Именно такое взаимодействие определяет связанность и целостность системы. С уровнем достигнутых знаний менялось и представления о структуре вещества. В качестве первичной системы микрообъектов сначала рассматривались молекулы как наименьшие единицы вещества. Сами представления о структуре молекулы постепенно совершенствовались и уточнялись. Существовало мнение, что структура молекулы возникает благодаря взаимодействию разноименно заряженных атомов или групп атомов. Но это было не совершенное суждение. В дальнейшем исследователи установили, что при образовании структур различные атомы не просто взаимодействуют, но известным образом преобразуют друг друга, так в результате получается целостность или связанная система. Позднее структуру молекул стали связывать с понятием валентности элемента. Дальнейшим шагом в этом направлении было изучение того, какую роль в образовании молекул из атомов играет степень напряженности и энергии, с которой они связываются друг с другом. Из всего этого необходимо уяснить главное: структура с точки зрения системного подхода представляет собой упорядоченную связь и взаимодействие между элементами системы, благодаря которой и возникают новые целостные ее свойства. В такой химической системе, как молекула, именно специфический характер взаимодействия атомов определяет новые целостные свойства молекулы.

Резерфорд положил основу ядерной модели атома как целостной системы. Она заключается во взаимодействии ядра атома, находящегося в центре атома и электронов, вращающихся вокруг ядра. Ядро состоит из положительно заряженных протонов и не имеющих заряда нейтронов. Число электронов в атоме равно числу протонов в ядре. Т.к. масса электронов в 2000 раз меньше массы протонов или нейтронов, поэтому вся масса атома сосредоточена в ядре. Разные электроны связаны с ядром в разной степени, некоторые из них атом легко теряет, при этом система переходит в другое состояние, атом становиться положительным ионом. Приобретая дополнительный электрон, атом превращается в отрицательный ион. При поглощении электромагнитного излучения, например света, атом возбуждается и совершает квантовый переход с нижнего уровня на более высокий. В связи с этим говорят об энергетических уровнях атома, которые определяют состояние атома как системы.

Атомное ядро как целостная система существует благодаря силам притяжения, связывающих протоны и нейтроны в атомном ядре. Эти силы называются ядерными или сильным взаимодействием. Так как по способности к сильному взаимодействию протон и нейтрон не отличаются друг от друга, поэтому их рассматривают как одну частицу — нуклон. Сильное взаимодействие действует на малых расстояниях (10-15 м) и превосходит электромагнитное и гравитационное, но оно уменьшается с увеличением расстояния.

Атомное ядро любого химического элемента состоит из протонов и нейтронов, связанных между собой ядерными силами (сильным взаимодействием). Протон – ядро атома водорода имеет положительный заряд, равный абсолютной величине заряда электрона и спин (собственный механический момент импульса) Нейтрон – электронейтральная частица c таким же как у протона спином. Протоны и нейтроны имеют очень близкие массы (масса нейтрона больше массы протона приблизительно на две массы электрона) и неразличимы с точки зрения ядерных сил (т.н. зарядовая независимость ядерного взаимодействия), их обычно называют нуклонами, т.е., “ядерными частицами”. Ядра, имеющие одинаковое число протонов, но разное число нейтронов, называются изотопами. У легких и средних ядер число протонов и нейтронов примерно одинаково.

Дифракционное рассеяние позволяет получить сведения не только о размере, но и о распределении материи внутри ядра. Чтобы объяснить, почему протоны внутри ядра очень прочно связаны, потребовалось ввести новую фундаментальную силу. Для преодоления электростатического отталкивания протонов эти (ядерные) силы должны быть больше электростатических.

В современной физике, основанной на квантовых принципах, вместо сил принято использовать понятие (потенциальной) энергии взаимодействия, т.к., именно потенциальная энергия взаимодействия входит в уравнение Шредингера или его обобщения. Это позволяет найти состояния системы (волновые функции), рассчитать уровни энергии и (в принципе) определить все экспериментально измеряемые характеристики, исследуемого объекта. Так и ядерное взаимодействие вместо введения сил удобно задавать с помощью потенциальной энергии. Если не учитывать довольно слабое электростатическое отталкивание, то сильное взаимодействие протона с протоном, протона с нейтроном и нейтрона с нейтроном будет в любом из этих случаев одним и тем же. Это взаимодействие называют нуклон – нуклонным.

Точная аналитическая зависимость энергии нуклон – нуклонного взаимодействия от расстояния между нуклонами до сих пор точно не известна. При расчетах используют полуэмпирический вид потенциала, который получают из опытов по рассеянию протонов и нейтронов на протонах.

Основные свойства и строение ядра

1. Ядром называется центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный электрический заряд. Все атомные ядра состоят из элементарных частиц: протонов и нейтронов, которые считаются двумя зарядовыми состояниями одной частицы – нуклона. Протон имеет положительный электрический заряд, равный по абсолютной величине заряду электрона. Нейтрон не имеет электрического заряда.

2. Зарядом ядра называется величина Ze, где е – величина заряда протона, Z – порядковый номер химического элемента в периодической системе Менделеева, равный числу протонов в ядре. В настоящее время известны ядра с Z от Z=1 до Z=107. Для всех ядер, кроме и некоторых других нейтронодефицитных ядер NіZ, где N – число нейтронов в ядре. Для легких ядер N/Z»1; для ядер химических элементов, расположенных в конце периодической системы, N/Z»1,6.

3. Число нуклонов в ядре A=N+Z называется массовым числом. Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону – нулевое значение А.

Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, которые при одинаковом А имеют различные Z, называются изобарами. Ядро химического элемента X обозначается , где Х – символ химического элемента.

Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов.

4. Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра. Эмпирическая формула для радиуса ядра м, может быть истолкована как пропорциональность объема ядра числу нуклонов в нем.

Плотность ядерного вещества составляет по порядку величины 1017 кг/м3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

5. Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра Рmяд в целом. Единицей измерения магнитных моментов ядер служит ядерный магнетон mяд:

Здесь е – абсолютная величина заряда электрона, mp – масса протона, с – электродинамическая постоянная. Ядерный магнетон в раз меньше магнетона Бора, откуда следует, что магнитные свойства атомов определяются магнитными свойствами его электронов.

6. Распределение электрического заряда протонов по ядру в общем случае несимметрично. Мерой отклонения этого распределения от сферически симметричного является квадрупольный электрический момент ядра Q. Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра.

2. Энергия связи ядер. Дефект массы. Ядерные силы.

Ядерные реакции.

1. Нуклоны в ядрах находятся в состояниях, существенно отличающихся от их свободных состояний. За исключением ядра обычного водорода во всех ядрах имеется не менее двух нуклонов, между которыми существует особое ядерное сильное взаимодействие – притяжение – обеспечивающее устойчивость ядер, несмотря на отталкивание одноименно заряженных протонов.

2. Энергией связи нуклона в ядре называется физическая величина, равная той работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии.

Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

3. При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если Wсв – величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная

4. Удельной энергией связи ядра wсв называется энергия связи, приходящаяся на один нуклон: wсв= . Величина wсв составляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.

5. Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А=const).

1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 м называется радиусом действия ядерных сил.

3. Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития – .

4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел А. Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.

исследованной Дж. Чедвиком в 1932 г., был впервые обнаружен нейтрон 10n. Именно открытие нейтрона положило начало современной ядерной физике и стало окончательным крушением электромагнитной картины мира, в которой предполагалось существование только трех фундаментальных частиц: электрона, протона и фотона.

После открытия нейтрона Д.Д. Иваненко и В. Гейзенберг выдвинули гипотезу о протонно – нейтронном строении ядра.

Одной из загадок нейтронов было то, что их не удавалось обнаружить в веществе в свободном состоянии. Впоследствии было выяснено, что причиной тому является их нестабильность. Каждый нейтрон вне ядра в течении нескольких минут самопроизвольно распадается на протон, электрон и электронное антинейтрино вследствие т.н. слабого взаимодействия.

В результате ядерных реакций образовались все элементы Вселенной. Излучаемая энергия Солнца поддерживается азотно-углеродным синтезом гелия:

Модель. Ядерные реакции.

Масса частиц, из которых состоит гелий, в изолированном состоянии составляет: электроны (2∙0,00055) + протоны (2∙1,0076) + нейтроны (2∙1,0089) = 4,0341.

В компактном состоянии масса гелия-4 равна 4,0039. Это уменьшение в 0,0302 единицы массы называется дефектом массы; ее энергетический эквивалент в соответствии с уравнением Эйнштейна составляет

Эта огромная величина ядерной энергии связи и служит основой ядерной энергетики. На рис. 1 приведена зависимость энергии связи от атомного числа для различных элементов.

На рис. 1 видно, что максимум устойчивости приходится на массовое число ~50. Это означает, что ядра легких элементов при слиянии достигают большей устойчивости (ядерный синтез), а ядра тяжелых элементов подвержены радиоактивному распаду или ядерному делению на два (три) фрагмента.

Ядерное деление используется для создания ядерного оружия или ядерных реакторов, в которых ядерные реакции поддаются управлению и которые являются основой атомных электрических станций (АЭС).

Атомные бомбы, взорванные над Хиросимой и Нагасаки, состояли из двух докритических масс урана-235, которые при соединении превысили критическую массу. При этом поток нейтронов, взаимодействуя с ураном-235, образовал неустойчивый изотоп урана-236, способный к ядерному делению на осколочные ядра и выделению до трех нейтронов на атом.

В среднем при делении неустойчивого урана-236 образуются 2–4 нейтрона, что обеспечивает цепной механизм реакции ядерного деления. Такая ядерная реакция возможна с участием медленных (тепловых) нейтронов с энергией 5–10 эВ. Нейтроны с высокой энергией замедляются большой (критической) массой урана (в атомной бомбе) или специальными замедлителями (графит, тяжелая вода) и поглотителями нейтронов (бор, кадмий) в атомных реакторах. Это позволяет поддерживать скорость образования нейтронов в пределах, необходимых для выделения энергии, заданной конструкцией реактора.

Малое содержание природного изотопа урана-235 привело исследователей к необходимости использования других, более доступных делящихся ядер в реакторах-размножителях:

Изотопы и пригодны в качестве ядерного горючего.

Вторым направлением в ядерной энергетике является ядерный синтез, подобный происходящему на Солнце в азотно-углеродном цикле. Ядерный синтез предпочтителен по двум причинам: легкие изотопы более распространены, а продукты ядерного синтеза нерадиоактивны. Непреодолимым препятствием для мирного осуществления ядерного синтеза гелия по реакции

является ее высокая температура (десятки млн К).

Военный вариант этого синтеза был осуществлен в водородной бомбе, где необходимую начальную температуру создавал атомный взрыв:

Проблема получения термоядерной энергии несмотря на научные достижения далека от практической реализации.

3. Закон радиоактивного распада

Свойства радиактивного излучения были изучены вскоре после открытия Беккерелем радиоактивности в 1896 г. Оказалось, что существуют три различных вида ядерного излучения (альфа, бета и гамма). После многолетних исследований было обнаружено, что а- излучение состоит из ядер гелия 42He, б- излучение – фотоны с очень высокой энергией, г- излучение, как правило, состоит из электронов.

Образец урана 238U испускает а-частицы по следующей схеме:

Спустя 4,5•109лет половина ядер образца 238U распадётся.

Теория альфа-распада построена Г.А. Гамовым в 1928 г.

В случае бета-распада более тщательные исследования показали, что некоторые ядра вместо электронов испускают их античастицы – позитроны, кроме того, испускание электронов или позитронов всегда сопровождается излучением нейтрино или антинейтрино. (Нейтрино – это элементарная частица с электрическим зарядом равным нулю, полуцелым спином 1/2 и нулевой (или очень малой) массой покоя.

Первая теория бета-распада была построена Э. Ферми в 1931 г.

Кроме хорошо известных альфа, бета и гамма – распадов в 1940 г. советскими физиками Г.Н. Флеровым и К.А. Петржаком открыт четвертый тип распада: самопроизвольное деления ядер урана на две примерно равные части. В 1970 была обнаружена протонная радиоактивность: выброс протона из ядра. Еще один вид распада – двухпротонную и двухнейтронную радиоактивность, предсказан в 1960 г. советским физиком-теоретиком В.И. Гольданским. Экспериментально этот вид распада еще не обнаружен.

Радиоактивное излучение воздействует на вещество и, передавая веществу энергию, вызывает в нем электронное возбуждение, ионизацию и разрыв химических связей. Особенно опасно радиоактивное излучение для биологических объектов, поскольку оно может нарушить нормальное функционирование клеток, приводя к необратимым последствиям и даже к летальным исходам. Воздействие радиоактивного излучения на организм зависит от проникающей способности излучения. Из трех видов внешнего радиоактивного излучения наименьшей проникающей способностью обладает α-излучение, которое практически полностью поглощается кожным покровом. Бета-излучение способно проникать под кожный покров на глубину до 1 см. Попадание в организм носителей этих радиоактивных излучений весьма опасно. Наибольшую опасность представляет собой гамма-излучение, поскольку оно обладает весьма высокой проникающей способностью.

Большие надежды ученые возлагают на реакцию управляемого термоядерного синтеза. Надежды на практическую реализацию управляемого термоядерного синтеза продолжают оставаться “умеренно оптимистическими” на протяжении более 40 лет.

Если бы удалось осуществить управляемые термоядерные реакции в промышленных условиях, то это дало бы доступ к практически неисчерпаемым источникам энергии и избавило бы человечество от угрозы энергетического кризиса. С другой стороны, если взорвутся те огромные запасы водородных бомб, которые накоплены (и продолжают накапливаться многими странами, несмотря на окончание т.н. холодной войны), то человечество и большая часть всего живого на Земле будет уничтожено.

Степень облучения определяется энергией, переданной живой ткани. Единица поглощенной дозы в СИ называется грей (Гр): 1 Гр = 1Дж/кг. Значение дозы, от которой в течение 30 суток погибает 50% живых существ, обозначают LD50(30). Для человека эта величина равна 3 Гр.

Биологическая эффективность воздействия поглощенной дозы характеризуется эквивалентной дозой (ЭД),равной произведению D на коэффициент, зависящий от типа излучения и характера ткани. Единица ЭД – зиверт (Зв). Предельно допустимая средняя индивидуальная ЭД равна 350 мЗв: максимальное годовое облучение не должно превышать 5 мЗв, а мощность дозы – 0,6 мкЗв/час. Природный радиационный фон 0,28 мЗв/год. Внесистемная единица – бэр: 1 Зв = 100 Бэр.

Другая единица – рентген – связана с оценкой числа ионов, образующихся в результате облучения. При поглощении в биологической ткани 1 Бэр = 1 рентген

Активность источника радиоактивности измеряется в кюри (Ku); активность в 1 Ku соответствует 3,7∙1010 ядерных распадов, которые происходят в 1 г радия за 1 с. Поскольку радиационное воздействие зависит не только от активности источника, но также от энергии и проникающей способности излучения, то для измерения дозы излучения используют еще две единицы – рад и бэр*). Рад – аббревиатура английского radiation absorbed dose (поглощенная доза излучения) – соответствует поглощению 1 кг вещества энергии излучения 0,01 Дж. Поскольку разные виды излучения неодинаково воздействуют на организм, то действие излучения оценивают в бэрах (биологический эквивалент рентгена), представляющих собой произведение поглощенной дозы излучения (в радах) на коэффициент качества излучения (КК):

Еще одна единица – рентген, по сути, соответствует раду.

эквивалентная доза излучения (в бэрах) = поглощенная доза излучения (в радах)∙КК.

КК принят равным единице для бета- и γ-лучей и десяти для альфа-лучей.

В среднем ежегодно на человека приходится 0,1–0,2 бэр фонового излучения Земли и космических лучей. В зависимости от места жительства это фоновое излучение может заметно меняться. Как уже упоминалось, наиболее опасными оказываются источники внутреннего облучения, основными из которых являются 14C, 90Sr, 90Y и 137Cs, а наиболее вредным – 90Sr, поскольку заметная его часть концентрируется в скелете и медленно выводится из организма.

Использование радиоактивных материалов требует определенной системы радиационной защиты персонала и населения. Проблема усугубляется тем, что радиоактивные материалы и радиоактивные отходы невозможно ликвидировать, их необходимо складировать. Особые трудности создают жидкие радиоактивные отходы, образующиеся при обработке судовых ядерных двигателей и переработке ядерного горючего. До сих пор экологические службы не признали надежным ни один из разработанных способов длительного хранения радиоактивных отходов, включая наиболее перспективное складирование в виде стеклообразных и керамических блоков в специально оборудованных подземных хранилищах.

Работать с радиоактивными препаратами можно только в специально оборудованных радиохимических лаборатория

Необходимость защиты окружающей среды от опасных техногенных воздействий промышленности на экосистемы

Характерные антропогенные радиационные воздействия на окружающую среду –

• загрязнение атмосферы и территорий продуктами ядерных взрывов при испытаниях ядерного оружия в 60-тые годы,

• отравление воздушного бассейна выбросами пыли, загрязнение территорий шлаками, содержащими радиоактивные вещества при сжигании ископаемых топлив в котлах электростанций,

• загрязнение территорий при авариях на атомных станциях и предприятиях.

Более локальные, но не менее неприятные последствия – гибель озер, рек из-за неочищенных радиоактивных сбросов промышленных предприятий.

Значительную опасность для живых существ, для популяций организмов в экосистемах представляют аварии на предприятиях химической, атомной промышленности, при транспортировании опасных и вредных веществ. Известные аварии на химическом заводе в Бхопале (Индия), на 4-ом блоке Чернобыльской АЭС, аварии с нефтеналивными судами, да и результаты скоротечной войны в Персидском заливе показывают масштабы экологических бедствий современного общества. Очевидно, что необходим радикальный пересмотр наших отношений с природой, нужны решительные шаги по защите окружающей среды, в частности многократное усиление мер воздействия нормативных рычагов на хозяйственную практику. Совершенно недопустимо, чтобы установленные нормативами предельные концентрации вредных веществ в воздухе, воде реально превышались в сотни раз. Нужно сделать невыгодным или даже разорительным пренебрежение к охране окружающей среды. Право людей на чистый воздух, чистые реки и озера должно не только декларироваться, но и реально обеспечиваться всеми доступными для государства средствами.

Какой же диапазон концентраций вредных веществ надлежит контролировать? Приведем примеры предельно допустимых концентраций вредных веществ, которые будут служить ориентирами в анализе возможностей радиационального мониторинга окружающей среды.

В основном нормативном документе по радиационной безопасности – Нормах радиационной безопасности (НРБ-76/87) даны значения предельно-допустимых концентраций радиоактивных веществ в воде и воздухе для профессиональных работников и ограниченной части населения. Данные по некоторым важным, биологически активным радионуклидам приведены в Таблице 1.

Реальные выбросы и сбросы радиоактивных веществ при нормальной эксплуатации АЭС обычно много ниже допустимых, так что нормы по концентрация радионуклидов в окружающей среде вблизи АЭС безусловно выполняются.

Воздействие атомных станций на окружающую среду

 Источники радиации

Техногенные воздействия на окружающую среду при строительстве и эксплуатации атомных электростанций многообразны. Обычно говорят, что имеются физические, химические, радиационные и другие факторы техногенного воздействия эксплуатации АЭС на объекты окружающей среды.

Отметим наиболее существенные факторы –

• локальное механическое воздействие на рельеф – при строительстве,

• повреждение особей в технологических системах – при эксплуатации,

• сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты,

• изменение характера землепользования и обменных процессов в непосредственной близости от АЭС,

• изменение микроклиматических характеристик прилежащих районов.

Возникновение мощных источников тепла в виде градирен, водоемов- охладителей при эксплуатации АЭС обычно заметным образом изменяет микроклиматические характеристики прилежащих районов. Движение воды в системе внешнего теплоотвода, сбросы технологических вод, содержащих разнообразные химические компоненты оказывают травмирующее воздействие на популяции, флору и фауну экосистем.

Особое значение имеет распространение радиоактивных веществ в окружающем пространстве. В комплексе сложных вопросов по защите окружающей среды большую общественную значимость имеют проблемы безопасности атомных станций (АС), идущих на смену тепловым станциям на органическом ископаемом топливе. Общепризнанно, что АС при их нормальной эксплуатации намного – не менее чем в 5-10 раз “чище” в экологическом отношении тепловых электростанций (ТЭС) на угле. Однако при авариях АС могут оказывать существенное радиационное воздействие на людей, экосистемы. Поэтому обеспечение безопасности экосферы и защиты окружающей среды от вредных воздействий атомных электростанций – крупная научная и технологическая задача ядерной энергетики, обеспечивающая ее будущее.

Отметим важность не только радиационных факторов возможных вредных воздействий АС на экосистемы, но и тепловое и химическое загрязнение окружающей среды, механическое воздействие на обитателей водоемов-охладителей, изменения гидрологических характеристик прилежащих к АС районов, т.е. весь комплекс техногенных воздействий, влияющих на экологическое благополучие окружающей среды.

Ограничение опасных воздействий АС на окружающую среду

Атомные станции и другие промышленные предприятия региона оказывают разнообразные воздействия на совокупность природных экосистем, составляющих экосферный регион АС. Под влиянием этих постоянно действующих или аварийных воздействий АС, других техногенных нагрузок происходит эволюция экосистем во времени, накапливаются и закрепляются изменения состояний динамического равновесия. Людям совершенно небезразлично в какую сторону направлены эти изменения в экосистемах, насколько они обратимы, каковы запасы устойчивости до значимых возмущений. Нормирование антропогенных нагрузок на экосистемы и предназначено для того, чтобы предотвращать все неблагоприятные изменения в них, а в лучшем варианте направлять эти изменения в благоприятную сторону. Чтобы разумно регулировать отношения АС с окружающей средой нужно конечно знать реакции биоценозов на возмущающие воздействия АС. Выше весьма схематично были обрисованы задачи моделирования таких воздействий. Ясно, что критические значения экологических факторов должны быть предметом специальных исследований биологов.

Подход к нормированию антропогенных воздействий может быть основан на эколого-токсикогенной концепции, т.е. необходимости предотвратить “отравление” экосистем вредными веществами и деградацию из-за чрезмерных нагрузок. Другими словами нельзя не только травить экосистемы, но и лишать их возможности свободно развиваться, нагружая шумом, пылью, отбросами, ограничивая их ареалы и пищевые ресурсы.

Чтобы избежать травмирования экосистем должны быть определены и нормативно зафиксированы некоторые предельные поступления вредных веществ в организмы особей, другие пределы воздействий, которые могли бы вызвать неприемлемые последствия на уровне популяций. Другими словами должны быть известны экологические емкости экосистем, величины которых не должны превышаться при техногенных воздействиях. Экологические емкости экосистем для различных вредных веществ следует определять по интенсивности поступления этих веществ, при которых хотя бы в одном из компонентов биоценоза возникнет критическая ситуация, т.е. когда накопление этих веществ приблизится к опасному пределу, будет достигаться критическая концентрация. В значениях предельных концентраций токсикогенов, в том числе радионуклидов, конечно, должны учитывать и синергетические, т.е. перекрестные эффекты. Однако этого, по-видимому, недостаточно. Для эффективной защиты окружающей среды необходимо законодательно ввести принцип ограничения вредных техногенных воздействий, в частности выбросов и сбросов опасных веществ. По аналогии с принципами радиационной защиты человека, упомянутыми выше, можно сказать, что принципы защиты окружающей среды состоят в том, что

• должны быть исключены необоснованные техногенные воздействия,

• накопление вредных веществ в биоценозах, техногенные нагрузки на элементы экосистем не должны превышать опасные пределы,

• поступление вредных веществ в элементы экосистем, техногенные нагрузки должны быть настолько низкими, насколько это возможно с учетом экономических и социальных факторов.

Вредные факторы и мониторинг окружающей среды

Важным элементов охраны окружающей среды является мониторинг экосистем, контроль состояния “здоровья” биоценозов. Задачи мониторинга состоят в том, чтобы

• получить комплексную информацию о концентрациях вредных веществ в различных компонентах экосистем,

• сопоставить результаты измерений с нормативными показателями содержания веществ в компонентах экосистем,

• оценить состояние экосистем и возможные последствия техногенных воздействий,

• использовать результаты измерений для совершенствования расчетного моделирования процессов в экосистемах и оценок последствий техногенных воздействий,

• использовать результаты анализа для разработки “обратных связей” и управления состоянием системы” АЭС + окружающая среда”.

Заключение

Развитие знаний и представлений об окружающем мире шло и идет от открытия одного класса многообразий структурных объектов к другому, более сложному для восприятия на данном историческом этапе. От атомов неразрезаемых – к атому в виде некоторой системы, структурными элементами которой являются электроны оболочки и центральное (неделимое) ядро.

Затем вскрывается нуклонная структура ядра, а в дальнейшем – и структура самих нуклонов …. И каждый раз человеческий разум ищет то внутреннее единство, которое позволяет охватить новое многообразие.

Для эпохи Аристотеля достаточно было четырех первоэлементов, для времени Д. И. Менделеева многообразие атомов занимало примерно 120 клеток его таблицы.

В середине 60х годов нашего столетия число открытых элементарных частиц превысило 350. Современная таблица фундаментальных структурных элементов содержит три поколения элементарных частиц. Это в общем счете 12 кварков и антикварков, 8 глюонов, 6 лептонов с их античастицами, фотоны и гравитоны.

Некоторое время назад казалось, что достаточно будет трех кварков, чтобы построить все остальное. Но открываются новые составляющие и идея малого числа фундаментальных основ не подтверждается. В последнее время в современном естествознании все больше вырисовывается другой подход. Он основан на признании принципа обязательной вариативности структурных элементов для сложных природных систем, будь то система элементарных частиц, или биоценоз.

Только при наличии некоторого минимального, но разнообразного набора можно построить функционально и структурно сложные системы. Само осознание принципа допустимости и необходимости, обязательности разнообразия элементов становится достоянием общей культуры человечества.

Опыт развития естествознания от классического к современному показал, что изучение иерархии структурных уровней частиц вещества неизбежно приводит к более глубокому пониманию свойств пространства и времени. И к осознанию того факта, что геометрические свойства пространственно-временного континиума могут определять численные значения фундаментальных констант нашего мира – гравитационной постоянной, заряда электрона, спектра масс-энергий элементарных частиц.

Ещё одно важное положение современного естествознания заключается в признании принципиальной невозможность изолировать отдельную частицу-объект в микромире, выделить полностью её из “контекста” процессов виртуальных взаимопревращений. Здесь только факт наличия наблюдателя – соучастника позволяет реализоваться одному из многих вероятных путей дальнейшей истории микрочастицы и исследуемого процесса в целом. По этой же причине следует считать грубым приближением выделение субъекта – человека из объективной реальности, в которой он существует.

Большинство явлений в окружающем человека мире относятся к процессам в открытых динамических системах, в противоположность представлениям классического естествознания об определяющей роли замкнутых или изолированных систем. Это понимание чрезвычайно важно в связи с явлениями самоорганизации в неживой и живой Природе. И о взаимосвязи двух компонент культуры – естественнонаучной и гуманитарной. А. Эйнштейн говорил, что Достоевский дал ему больше, чем все изучение математики. С другой стороны, по нашему мнению, феномен абстракционизма и авангардизма не мог бы состояться вне атмосферы влияния на гуманитарную культуру специальной теории относительности и идей квантовой физики. В частности, с его искажениями перспективы и форм, изогнутыми циферблатами часов, определенно несет отпечаток времени становления СТО и проникновения идей относительности в общую культуру. Теории, в которой пространство “сжимается”, а временные интервалы “растягиваются” в зависимости от условий движения.

Литература

1. Д. Никитин, Ю. Новиков “Окружающая среда и человек”, Изд. 2-ое, М., Изд. Высш. школа, 1986 г.

2. А.М. Букринский, В.А. Сидоренко, Н.А. Штейнберг “Безопасность атомных станций и ее государственное регулирование”, Атомная энергия, том 68, вып. 5, май 1990 г.

3. Публикация МКРЗ N 26, “Радиационная защита”, Москва, Атомиздат, 1978 г.

4. Р.М. Алексахин, И.И. Крышев, С.В. Фесенко, Н.И. Санжарова Радиоэкологические проблемы ядерной энергетики”, Атомная энергия, том 68, вып. 5, май 1990 г.

5. НТД МХО Интератомэнерго 38.220.56-84 “Методы расчета распространения радиоактивных веществ с АЭС и облучения окружающего населения”, Москва, Энергоатомиздат, 1984 г.

6. Л.В. Тарасов, Этот удивительно симметричный мир. Пособие для учащихся. М.: Просвещение. 1982.

7. Дж. Фейнберг, Из чего сделан мир? Атомы, лептоны, кварки и другие загадочные частицы. М.: Мир, 1981.

8. Л.Б. Окунь, Элементарное введение в физику элементарных частиц. М.: Наука. 1985.

9. О.П. Спиридонов, Фундаментальные физические постоянные. М.: Высшая школа, 1991.

10. Горохов А.В. “Физика атомного ядра. Физика элементарных частиц”

11. И. Р. Пригожин “От существующего к возникающему”, М., 1994.

12. А. П. Пурмаль “Как превращаются вещества”, Наука,1989.

13. М. Д. Франк-Каменецкий “Самая главная молекула”, Наука, 1989.

14. Григорьев В.И., Мякишев Г.Я. Силы в природе. // М., Наука, 1983 г.

15. Кудрявцев П.С. Курс истории физики. // М., Просвещение, 1982 г.

16. Яворский Б.М., Детлаф А.А. Справочник по физике. // М., Наука, 1990 г.